Approximation algorithms for stochastic clustering

被引:0
|
作者
Harris, David G. [1 ]
Li, Shi [2 ]
Pensyl, Thomas [3 ]
Srinivasan, Aravind [1 ,4 ]
Khoa Trinh [5 ]
机构
[1] Univ Maryland, Dept Comp Sci, College Pk, MD 20742 USA
[2] SUNY Buffalo, Buffalo, NY USA
[3] Bandwidth Inc, Raleigh, NC USA
[4] Univ Maryland, Inst Adv Comp Studies, College Pk, MD 20742 USA
[5] Google, Mountain View, CA 94043 USA
关键词
clustering; k-center; k-median; lottery; approximation algorithms; RACE;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We consider stochastic settings for clustering, and develop provably-good (approximation) algorithms for a number of these notions. These algorithms allow one to obtain better approximation ratios compared to the usual deterministic clustering setting. Additionally, they offer a number of advantages including providing fairer clustering and clustering which has better long-term behavior for each user. In particular, they ensure that every user is guaranteed to get good service (on average). We also complement some of these with impossibility results.
引用
下载
收藏
页数:10
相关论文
共 50 条
  • [31] Approximation algorithms for clustering to minimize the sum of diameters
    Doddi, SR
    Marathe, MV
    Ravi, SS
    Taylor, DS
    Widmayer, P
    ALGORITHM THEORY - SWAT 2000, 2000, 1851 : 237 - 250
  • [32] IMPROVED APPROXIMATION ALGORITHMS FOR BIPARTITE CORRELATION CLUSTERING
    Ailon, Nir
    Avigdor-Elgrabli, Noa
    Liberty, Edo
    van Zuylen, Anke
    SIAM JOURNAL ON COMPUTING, 2012, 41 (05) : 1110 - 1121
  • [33] Approximation Algorithms on k-Correlation Clustering
    Tang, Zhong-Zheng
    Diao, Zhuo
    JOURNAL OF THE OPERATIONS RESEARCH SOCIETY OF CHINA, 2023, 11 (04) : 911 - 924
  • [34] Approximation algorithms for bi-clustering problems
    Wang, Lusheng
    Lin, Yu
    Liu, Xiaowen
    ALGORITHMS IN BIOINFORMATICS, PROCEEDINGS, 2006, 4175 : 310 - 320
  • [35] Improved Approximation Algorithms for Bipartite Correlation Clustering
    Ailon, Nir
    Avigdor-Elgrabli, Noa
    Liberty, Edo
    van Zuylen, Anke
    ALGORITHMS - ESA 2011, 2011, 6942 : 25 - 36
  • [36] Approximation Algorithms on k-Correlation Clustering
    Zhong-Zheng Tang
    Zhuo Diao
    Journal of the Operations Research Society of China, 2023, 11 : 911 - 924
  • [37] On the choice of random directions for stochastic approximation algorithms
    Theiler, J
    Alper, J
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2006, 51 (03) : 476 - 481
  • [38] On conditions for convergence rates of stochastic approximation algorithms
    Chong, EKP
    Wang, IJ
    Kulkarni, SR
    PROCEEDINGS OF THE 36TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-5, 1997, : 2279 - 2280
  • [39] TRAJECTORY AVERAGING FOR STOCHASTIC APPROXIMATION MCMC ALGORITHMS
    Lang, Faming
    ANNALS OF STATISTICS, 2010, 38 (05): : 2823 - 2856
  • [40] Stochastic approximation algorithms: Overview and recent trends
    Bharath, B
    Borkar, VS
    SADHANA-ACADEMY PROCEEDINGS IN ENGINEERING SCIENCES, 1999, 24 (4-5): : 425 - 452