Nonexpansive mappings on Abelian Banach algebras and their fixed points

被引:4
|
作者
Fupinwong, W. [1 ,2 ]
机构
[1] Chiang Mai Univ, Dept Math, Fac Sci, Chiang Mai 50200, Thailand
[2] CHE, Ctr Excellence Math, Bangkok, Thailand
关键词
fixed point property; nonexpansive mapping; Abelian Banach algebra; PROPERTY;
D O I
10.1186/1687-1812-2012-150
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A Banach space X is said to have the fixed point property if for each nonexpansive mapping on a bounded closed convex subset E of X has a fixed point. We show that each infinite dimensional Abelian complex Banach algebra X satisfying: (i) property (A) defined in (Fupinwong and Dhompongsa in Fixed Point Theory Appl. 2010:Article ID 34959, 2010), (ii) for each such that for each , (iii) does not have the fixed point property. This result is a generalization of Theorem 4.3 in (Fupinwong and Dhompongsa in Fixed Point Theory Appl. 2010:Article ID 34959, 2010). MSC: 46B20, 46J99.
引用
收藏
页数:6
相关论文
共 50 条