Classification of Single-Cell Gene Expression Trajectories from Incomplete and Noisy Data

被引:6
|
作者
Karbalayghareh, Alireza [1 ]
Braga-Neto, Ulisses [1 ]
Dougherty, Edward R. [1 ]
机构
[1] Texas A&M Univ, Dept Elect & Comp Engn, College Stn, TX 77843 USA
基金
美国国家科学基金会;
关键词
Gene regulatory network; probabilistic Boolean network; trajectory classification; Bayes classifier; expectation maximization; hidden Markov model; partially observed Boolean dynamical system; single-cell gene expression trajectory;
D O I
10.1109/TCBB.2017.2763946
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
This paper studies classification of gene-expression trajectories coming from two classes, healthy and mutated (cancerous) using Boolean networks with perturbation (BNps) to model the dynamics of each class at the state level. Each class has its own BNp, which is partially known based on gene pathways. We employ a Gaussian model at the observation level to show the expression values of the genes given the hidden binary states at each time point. We use expectation maximization (EM) to learn the BNps and the unknown model parameters, derive closed-form updates for the parameters, and propose a learning algorithm. After learning, a plug-in Bayes classifier is used to classify unlabeled trajectories, which can have missing data. Measuring gene expressions at different times yields trajectories only when measurements come from a single cell. In multiple-cell scenarios, the expression values are averages over many cells with possibly different states. Via the central-limit theorem, we propose another model for expression data in multiple-cell scenarios. Simulations demonstrate that single-cell trajectory data can outperform multiple-cell average expression data relative to classification error, especially in high-noise situations. We also consider data generated via a mammalian cell-cycle network, both the wild-type and with a common mutation affecting p27.
引用
收藏
页码:193 / 207
页数:15
相关论文
共 50 条
  • [41] Optimal-Transport Analysis of Single-Cell Gene Expression Identifies Developmental Trajectories in Reprogramming
    Schiebinger, Geoffrey
    Shu, Jian
    Tabaka, Marcin
    Cleary, Brian
    Subramanian, Vidya
    Solomon, Aryeh
    Gould, Joshua
    Liu, Siyan
    Lin, Stacie
    Berube, Peter
    Lee, Lia
    Chen, Jenny
    Brumbaugh, Justin
    Rigollet, Philippe
    Hochedlinger, Konrad
    Jaenisch, Rudolf
    Regev, Aviv
    Lander, Eric S.
    CELL, 2019, 176 (04) : 928 - +
  • [42] ArrayExpress update - from bulk to single-cell expression data
    Athar, Awais
    Fullgrabe, Anja
    George, Nancy
    Iqbal, Haider
    Huerta, Laura
    Ali, Ahmed
    Snow, Catherine
    Fonseca, Nuno A.
    Petryszak, Robert
    Papatheodorou, Irene
    Sarkans, Ugis
    Brazma, Alvis
    NUCLEIC ACIDS RESEARCH, 2019, 47 (D1) : D711 - D715
  • [43] TRACING CO-REGULATORY NETWORK DYNAMICS IN NOISY, SINGLE-CELL TRANSCRIPTOME TRAJECTORIES
    Cordero, Pablo
    Stuart, Joshua M.
    PACIFIC SYMPOSIUM ON BIOCOMPUTING 2017, 2017, : 576 - 587
  • [44] scMaSigPro: differential expression analysis along single-cell trajectories
    Srivastava, Priyansh
    Coll, Marta Benegas
    Gotz, Stefan
    Nueda, Maria Jose
    Conesa, Ana
    BIOINFORMATICS, 2024, 40 (07)
  • [45] Alignment of single-cell trajectories to compare cellular expression dynamics
    Alpert, Ayelet
    Moore, Lindsay S.
    Dubovik, Tania
    Shen-Orr, Shai S.
    NATURE METHODS, 2018, 15 (04) : 267 - +
  • [46] Alignment of single-cell trajectories to compare cellular expression dynamics
    Alpert A.
    Moore L.S.
    Dubovik T.
    Shen-Orr S.S.
    Nature Methods, 2018, 15 (4) : 267 - 270
  • [48] A probabilistic gene expression barcode for annotation of cell types from single-cell RNA-seq data
    Grabski, Isabella N.
    Irizarry, Rafael A.
    BIOSTATISTICS, 2022, 23 (04) : 1150 - 1164
  • [49] Bayesian estimation of cell type-specific gene expression with prior derived from single-cell data
    Wang, Jiebiao
    Roeder, Kathryn
    Devlin, Bernie
    GENOME RESEARCH, 2021, 31 (10) : 1807 - 1818
  • [50] Single-cell gene expression of the bovine blastocyst
    Negron-Perez, Veronica M.
    Zhang, Yanping
    Hansen, Peter J.
    REPRODUCTION, 2017, 154 (05) : 627 - 644