Predicting survival in urothelial cancer patients after immunotherapy using real-world data

被引:2
|
作者
Elumalai, T. [1 ]
Aversa, C. [2 ]
Buijtenhuijs, B. [1 ]
Conroy, R. [1 ]
Croxford, W. [1 ]
Das, A. [3 ]
Doss, G. [2 ]
Enting, D. [4 ]
Kitetere, E. [5 ]
Sanderson, B. [5 ]
Vasudev, N. [6 ]
Mistry, H. [7 ]
Choudhury, A. [7 ]
机构
[1] Christie NHS Fdn Trust, Dept Clin Oncol, Manchester, Lancs, England
[2] Guys & St Thomas NHS Fdn Trust, Dept Clin Oncol, London, England
[3] St Jamess Inst Oncol, Dept Clin Oncol, Leeds, W Yorkshire, England
[4] Guys & St Thomas Hosp NHS Trust, Dept Oncol, London, England
[5] Royal Marsden NHS Fdn Trust, Dept Clin Oncol, London, England
[6] Royal Preston Hosp, Dept Clin Oncol, Rosemere Canc Ctr, Preston, Lancs, England
[7] Univ Manchester, Div Canc Sci, Manchester, Lancs, England
关键词
D O I
10.1016/j.annonc.2020.08.837
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
765P
引用
下载
收藏
页码:S590 / S590
页数:1
相关论文
共 50 条
  • [41] Relationship between dynamic changes in circulating tumor fraction and real-world imaging with real-world survival in patients with solid tumors treated with immunotherapy
    Iams, Wade Thomas
    Mitra, Akash
    Guittar, John
    Gentzler, Ryan D.
    Schwind, Regina M.
    Dugan, Adam Joseph
    Liu, Yan
    Hyun, Seung Won
    Stein, Michelle M.
    Sasser, Kate
    Ben-Shachar, Rotem
    Nimeiri, Halla
    Patel, Jyoti D.
    Chaudhuri, Aadel A.
    JOURNAL OF CLINICAL ONCOLOGY, 2024, 42 (16)
  • [42] Immunotherapy in Hispanic patients with advanced non-small cell lung cancer: A real-world data.
    Lujan, Mauricio
    Lema, Mauricio
    Preciado, Beatriz
    Lema, Camila
    Egurrola, Jorge
    Zorrilla, Andres Felipe Cardona
    Gonzalez, Diego Mauricio
    Mantilla, William Armando
    Pino, Luis
    Rojas, Gustavo
    Gomez-Abreo, Diego Andres
    Munevar, Isabel
    Manneh, Raimundo
    Kopp, Ray Manneh
    Lobaton, Jose F.
    Calle, Esteban
    Borras, Mariana
    Triana, Ivan Camilo
    Pineda, Mateo
    Ortio, Diego Moran
    JOURNAL OF CLINICAL ONCOLOGY, 2022, 40 (16)
  • [43] Real-world outcomes of systemic therapy in Japanese cancer patients: Tokushukai REAl-world Data project (TREAD)
    Shimoyama, Rai
    Imamura, Yoshinori
    Uryu, Kiyoaki
    Mase, Takahiro
    Fujimura, Yoshiaki
    Hayashi, Maki
    Ohtaki, Megu
    Otani, Keiko
    Minami, Hironobu
    Shinozaki, Nobuaki
    ANNALS OF ONCOLOGY, 2022, 33 : S485 - S486
  • [44] A method for predicting crash configurations using counterfactual simulations and real-world data
    Leledakis, Alexandros
    Lindman, Magdalena
    Osth, Jonas
    Wagstrom, Linus
    Davidsson, Johan
    Jakobsson, Lotta
    ACCIDENT ANALYSIS AND PREVENTION, 2020, 150
  • [45] Real-World Battles with Real-World Data
    Brown, Jeffrey
    Bate, Andrew
    Platt, Robert
    Raebel, Marsha
    Sauer, Brian
    Trifiro, Gianluca
    PHARMACOEPIDEMIOLOGY AND DRUG SAFETY, 2017, 26 : 254 - 255
  • [46] Intrathecal catheterisation after accidental dural puncture: real-world data, real-world benefits and real-world barriers
    Broom, M. A.
    ANAESTHESIA, 2023, 78 (10) : 1195 - 1198
  • [47] Application of machine learning in predicting survival outcomes involving real-world data: a scoping review
    Huang, Yinan
    Li, Jieni
    Li, Mai
    Aparasu, Rajender R.
    BMC MEDICAL RESEARCH METHODOLOGY, 2023, 23 (01)
  • [48] Machine Learning Using Real-World and Translational Data to Improve Treatment Selection for NSCLC Patients Treated with Immunotherapy
    Prelaj, Arsela
    Boeri, Mattia
    Robuschi, Alessandro
    Ferrara, Roberto
    Proto, Claudia
    Lo Russo, Giuseppe
    Galli, Giulia
    De Toma, Alessandro
    Brambilla, Marta
    Occhipinti, Mario
    Manglaviti, Sara
    Beninato, Teresa
    Bottiglieri, Achille
    Massa, Giacomo
    Zattarin, Emma
    Gallucci, Rosaria
    Galli, Edoardo Gregorio
    Ganzinelli, Monica
    Sozzi, Gabriella
    de Braud, Filippo G. M.
    Garassino, Marina Chiara
    Restelli, Marcello
    Pedrocchi, Alessandra Laura Giulia
    Trovo, Francesco
    CANCERS, 2022, 14 (02)
  • [49] Application of machine learning in predicting survival outcomes involving real-world data: a scoping review
    Yinan Huang
    Jieni Li
    Mai Li
    Rajender R. Aparasu
    BMC Medical Research Methodology, 23
  • [50] Predicting Clinical Remission of Chronic Urticaria Using Random Survival Forests: Machine Learning Applied to Real-World Data
    Irina Pivneva
    Maria-Magdalena Balp
    Yvonne Geissbühler
    Thomas Severin
    Serge Smeets
    James Signorovitch
    Jimmy Royer
    Yawen Liang
    Tom Cornwall
    Jutong Pan
    Andrii Danyliv
    Sarah Jane McKenna
    Alexander M. Marsland
    Weily Soong
    Dermatology and Therapy, 2022, 12 : 2747 - 2763