Cross-View Action Recognition Based on Hierarchical View-Shared Dictionary Learning

被引:9
|
作者
Zhang, Chengkun [1 ]
Zheng, Huicheng [1 ,3 ]
Lai, Jianhuang [1 ,2 ]
机构
[1] Sun Yat Sen Univ, Sch Data & Comp Sci, Guangzhou 510006, Guangdong, Peoples R China
[2] Guangdong Key Lab Informat Secur Technol, Guangzhou 510006, Guangdong, Peoples R China
[3] Minist Educ, Key Lab Machine Intelligence & Adv Comp, Guangzhou 510006, Guangdong, Peoples R China
来源
IEEE ACCESS | 2018年 / 6卷
基金
中国国家自然科学基金;
关键词
Cross-view; action recognition; hierarchical transfer learning; feature space transformation; dictionary learning;
D O I
10.1109/ACCESS.2018.2815611
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Recognizing human actions across different views is challenging, since observations of the same action often vary greatly with viewpoints. To solve this problem, most existing methods explore the cross-view feature transfer relationship at video level only, ignoring the sequential composition of action segments therein. In this paper, we propose a novel hierarchical transfer framework, which is based on an action temporal-structure model that contains sequential relationship between action segments at multiple timescales. Thus, it can capture the view invariance of the sequential relationship of segment-level transfer. Additionally, we observe that the original feature distributions under different views differ greatly, leading to view-dependent representations irrelevant to the intrinsic structure of actions. Thus, at each level of the proposed framework, we transform the original feature spaces of different views to a view-shared low dimensional feature space, and jointly learn a dictionary in this space for these views. This view-shared dictionary captures the common structure of action data across the views and can represent the action segments in a way robust to view changes. Moreover, the proposed method can be kernelized easily, and operate in both unsupervised and supervised cross-view scenarios. Extensive experimental results on the IXMAS and WVU datasets demonstrate superiority of the proposed method over state-of-the-art methods.
引用
收藏
页码:16855 / 16868
页数:14
相关论文
共 50 条
  • [21] Heterogeneous Discriminant Analysis for Cross-View Action Recognition
    Sui, Wanchen
    Wu, Xinxiao
    Feng, Yang
    Liang, Wei
    Jia, Yunde
    [J]. NEURAL INFORMATION PROCESSING, ICONIP 2015, PT IV, 2015, 9492 : 566 - 573
  • [22] Deeply Learned View-Invariant Features for Cross-View Action Recognition
    Kong, Yu
    Ding, Zhengming
    Li, Jun
    Fu, Yun
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2017, 26 (06) : 3028 - 3037
  • [23] Cross-View Self-Similarity Using Shared Dictionary Learning for Cervical Cancer Staging
    Bnouni, Nesrine
    Rekik, Islem
    Rhim, Mohamed Salah
    Ben Amara, Najoua Essoukri
    [J]. IEEE ACCESS, 2019, 7 : 30079 - 30088
  • [24] Hierarchically Learned View-Invariant Representations for Cross-View Action Recognition
    Liu, Yang
    Lu, Zhaoyang
    Li, Jing
    Yang, Tao
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2019, 29 (08) : 2416 - 2430
  • [25] A Geometric Approach for Cross-View Human Action Recognition using Deep Learning
    Papadakis, Antonios
    Mathe, Eirini
    Spyrou, Evaggelos
    Mylonas, Phivos
    [J]. PROCEEDINGS OF THE 2019 11TH INTERNATIONAL SYMPOSIUM ON IMAGE AND SIGNAL PROCESSING AND ANALYSIS (ISPA 2019), 2019, : 258 - 263
  • [26] Deep Cross-view Convolutional Features for View-invariant Action Recognition
    Ulhaq, Anwaar
    [J]. 2018 IEEE THIRD INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, APPLICATIONS AND SYSTEMS (IPAS), 2018, : 137 - 142
  • [27] Cross-view gait recognition through ensemble learning
    Wang, Xiuhui
    Yan, Wei Qi
    [J]. NEURAL COMPUTING & APPLICATIONS, 2020, 32 (11): : 7275 - 7287
  • [28] Cross-view gait recognition through ensemble learning
    Xiuhui Wang
    Wei Qi Yan
    [J]. Neural Computing and Applications, 2020, 32 : 7275 - 7287
  • [29] Cross-View Gait Recognition by Discriminative Feature Learning
    Zhang, Yuqi
    Huang, Yongzhen
    Yu, Shiqi
    Wang, Liang
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2020, 29 : 1001 - 1015
  • [30] Cross-domain learned view-invariant representation for cross-view action recognition
    Li, Yandi
    Li, Mengdi
    Zhao, Zhihao
    [J]. JOURNAL OF ELECTRONIC IMAGING, 2022, 31 (06)