Assessing Constitutive Models for Prediction of High-Temperature Flow Behavior with a Perspective of Alloy Development

被引:11
|
作者
Kumar, Santosh [1 ,2 ]
Aashranth, B. [1 ]
Davinci, M. Arvinth [1 ]
Samantaray, Dipti [1 ]
Borah, Utpal [1 ]
Bhaduri, A. K. [1 ,2 ]
机构
[1] Indira Gandhi Ctr Atom Res, Kalpakkam 603102, Tamil Nadu, India
[2] Homi Bhabha Natl Inst, Training Sch Complex, Bombay 400094, Maharashtra, India
关键词
alloy development; artificial neural network; evaluation criteria; flow behavior; mathematical models; ARTIFICIAL NEURAL-NETWORK; AUSTENITIC STAINLESS-STEEL; MECHANICAL THRESHOLD STRESS; HOT DEFORMATION-BEHAVIOR; ELEVATED-TEMPERATURE; ARRHENIUS-TYPE; STRAIN RATES; TENSILE PROPERTIES; ZERILLI-ARMSTRONG; MAGNESIUM ALLOY;
D O I
10.1007/s11665-018-3237-6
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The utility of different constitutive models describing high-temperature flow behavior has been evaluated from the perspective of alloy development. Strain compensated Arrhenius model, modified Johnson-Cook (MJC) model, model D8A and artificial neural network (ANN) have been used to describe flow behavior of different model alloys. These alloys are four grades of SS 316LN with different nitrogen contents ranging from 0.07 to 0.22%. Grades with 0.07%N and 0.22%N have been used to determine suitable material constants of the constitutive equations and also to train the ANN model. While the ANN model has been developed with chemical composition as a direct input, the MJC and D8A models have been amended to incorporate the effect of nitrogen content on flow behavior. The prediction capabilities of all models have been validated using the experimental data obtained from grades containing 0.11%N and 0.14%N. The comparative analysis demonstrates that 'N-amended D8A' and 'N-amended MJC' are preferable to the ANN model for predicting flow behavior of different grades of 316LN. The work provides detailed insights into the usual statistical error analysis technique and frames five additional criteria which must be considered when a model is analyzed from the perspective of alloy development.
引用
收藏
页码:2024 / 2037
页数:14
相关论文
共 50 条
  • [31] Flow Behavior of TA32 Titanium Alloy at High Temperature and Its Constitutive Model
    Chen Can
    Chen Minghe
    Xie Lansheng
    Gong Zonghui
    RARE METAL MATERIALS AND ENGINEERING, 2019, 48 (03) : 827 - 834
  • [32] Flow Behavior of TA32 Titanium Alloy at High Temperature and Its Constitutive Model
    Chen, Can
    Chen, Minghe
    Xie, Lansheng
    Gong, Zonghui
    Xiyou Jinshu Cailiao Yu Gongcheng/Rare Metal Materials and Engineering, 2019, 48 (03): : 827 - 834
  • [33] THE DEVELOPMENT AND EVALUATION OF A HIGH-TEMPERATURE TITANIUM ALLOY
    HARRIS, GT
    CHILD, HC
    DALTON, AL
    JOURNAL OF THE INSTITUTE OF METALS, 1959, 88 (03): : 112 - 120
  • [34] An investigation of the effect of texture on the high-temperature flow behavior of an orthorhombic titanium aluminide alloy
    Nicolaou, P.D.
    Semiatin, S.L.
    Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 1997, 28 (03): : 885 - 893
  • [35] The high temperature flow behavior modeling of NiTi shape memory alloy employing phenomenological and physical based constitutive models: A comparative study
    Shamsolhodaei, A.
    Zarei-Hanzaki, A.
    Ghambari, M.
    Moemeni, S.
    INTERMETALLICS, 2014, 53 : 140 - 149
  • [36] An investigation of the effect of texture on the high-temperature flow behavior of an orthorhombic titanium aluminide alloy
    Nicolaou, PD
    Semiatin, SL
    METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 1997, 28 (3A): : 885 - 893
  • [37] An investigation of the effect of texture on the high-temperature flow behavior of an orthorhombic titanium aluminide alloy
    Nicolaou P.D.
    Semiatin S.L.
    Metallurgical and Materials Transactions A, 1997, 28 (3) : 885 - 893
  • [38] An investigation of the effect of texture on the high-temperature flow behavior of an orthorhombic titanium aluminide alloy
    Nicolaou P.D.
    Semiatin S.L.
    Metallurgical and Materials Transactions A, 1997, 28 (13) : 885 - 893
  • [39] A phenomenological constitutive model for high temperature flow stress prediction of Al-Cu-Mg alloy
    Lin, Y. C.
    Li, Qi-Fei
    Xia, Yu-Chi
    Li, Lei-Ting
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2012, 534 : 654 - 662
  • [40] Constitutive equations for high temperature flow stress prediction of 6063 Al alloy considering compensation of strain
    Gan, Chun-lei
    Zheng, Kai-hong
    Qi, Wen-jun
    Wang, Meng-jun
    TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA, 2014, 24 (11) : 3486 - 3491