Robust Recovery of Low-Rank Matrices via Non-Convex Optimization

被引:0
|
作者
Chen, Laming [1 ]
Gu, Yuantao [1 ]
机构
[1] Tsinghua Univ, State Key Lab Microwave & Digital Commun, Tsinghua Natl Lab Informat Sci & Technol, Dept Elect Engn, Beijing 100084, Peoples R China
关键词
Low-rank recovery; non-convex optimization; convergence analysis; COMPLETION;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In the area of low-rank recovery, existing researches find that non-convex penalties might lead to better performance than convex ones such as the nuclear norm, but until now the complete convergence guarantees of algorithms for optimization with non-convex low-rank-inducing penalties are still rare. This paper is mainly motivated by this research gap. A class of low-rank-inducing penalties is introduced with characterization of their non-convexity. By properly defining the gradients of the penalty, an algorithm is proposed to solve the non-convex optimization problem. Theoretical analysis reveals that if the non-convexity of the penalty is below a threshold (which is in inverse proportion to the distance between the initialization and the low-rank matrix), the recovery error is linear in both the step size and the noise term. Numerical simulations are implemented to test the performance of the proposed algorithm and to verify the theoretical results.
引用
收藏
页码:355 / 360
页数:6
相关论文
共 50 条
  • [31] Fast Sparse Recovery via Non-Convex Optimization
    Chen, Laming
    Gu, Yuantao
    2015 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP), 2015, : 1275 - 1279
  • [32] Exact Low-rank Matrix Completion via Convex Optimization
    Candes, Emmanuel J.
    Recht, Benjamin
    2008 46TH ANNUAL ALLERTON CONFERENCE ON COMMUNICATION, CONTROL, AND COMPUTING, VOLS 1-3, 2008, : 806 - +
  • [33] Non-convex projected gradient descent for generalized low-rank tensor regression
    Chen, Han
    Raskutti, Garvesh
    Yuan, Ming
    Journal of Machine Learning Research, 2019, 20
  • [34] Non-Convex Projected Gradient Descent for Generalized Low-Rank Tensor Regression
    Chen, Han
    Raskutti, Garvesh
    Yuan, Ming
    JOURNAL OF MACHINE LEARNING RESEARCH, 2019, 20
  • [35] Low-Rank Optimization With Convex Constraints
    Grussler, Christian
    Rantzer, Anders
    Giselsson, Pontus
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2018, 63 (11) : 4000 - 4007
  • [36] Low-Rank Matrix Recovery Via Robust Outlier Estimation
    Guo, Xiaojie
    Lin, Zhouchen
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2018, 27 (11) : 5316 - 5327
  • [37] Robust Optimization for Non-Convex Objectives
    Chen, Robert
    Lucier, Brendan
    Singer, Yaron
    Syrgkanis, Vasilis
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 30 (NIPS 2017), 2017, 30
  • [38] Efficient noise reduction for interferometric phase image via non-local non-convex low-rank regularisation
    Luo, Xiao Mei
    Suo, Zhi Yong
    Liu, Qie Gen
    Wang, Xiang Feng
    IET SIGNAL PROCESSING, 2016, 10 (07) : 815 - 824
  • [39] Recovering Low-Rank and Sparse Matrices via Robust Bilateral Factorization
    Shang, Fanhua
    Liu, Yuanyuan
    Cheng, James
    Cheng, Hong
    2014 IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM), 2014, : 965 - 970
  • [40] ROBUST RECOVERY OF LOW-RANK MATRICES AND LOW-TUBAL-RANK TENSORS FROM NOISY SKETCHES
    Ma, Anna
    Stoeger, Dominik
    Zhu, Yizhe
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2023, 44 (04) : 1566 - 1588