FAULT TOLERANT UNSUPERVISED KERNEL-BASED INFORMATION CLUSTERING IN HYPERSPECTRAL IMAGES

被引:0
|
作者
Malhotra, Akshay [1 ]
Shahid, Kazi Tanzeem [1 ]
Schizas, Ioannis D. [1 ]
Tjuatja, Saibun [1 ]
机构
[1] Univ Texas Arlington, Dept Elect Engn, 416 Yates St, Arlington, TX 76010 USA
关键词
Canonical correlations; kernels; sparsity; clustering; CLASSIFICATION;
D O I
暂无
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
In this work we derive a novel clustering scheme for hyper spectral pixels according to the material they sense. We utilize statistical correlations that pixels sensing the same material exhibit. Specifically, kernel learning is combined with a norm-one regularized canonical correlations framework that can perform data clustering on nonlinearly dependent data. To tackle the derived minimization formulation we employ gradient descent iterations that enable a computationally efficient determination of proper sparse clustering matrices. Extensive numerical tests on real hyperspectral images reveal that the proposed approach, in spite of being unsupervised, can outperform existing supervised and unsupervised techniques especially in the presence of missing pixels that may be caused by malfunctioning in the data acquisition system.
引用
收藏
页码:2191 / 2194
页数:4
相关论文
共 50 条
  • [31] Robust deep kernel-based fuzzy clustering with spatial information for image segmentation
    Lujia Lei
    Chengmao Wu
    Xiaoping Tian
    [J]. Applied Intelligence, 2023, 53 : 23 - 48
  • [32] Particle swarm optimization of kernel-based fuzzy c-means for hyperspectral data clustering
    Niazmardi, Saeid
    Naeini, Amin Alizadeh
    Homayouni, Saeid
    Safari, Abdolreza
    Samadzadegan, Farhad
    [J]. JOURNAL OF APPLIED REMOTE SENSING, 2012, 6
  • [33] Enhanced kernel-based fuzzy local information clustering integrating neighborhood membership
    Song Yue
    Wu Chengmao
    Tian Xiaoping
    Song Qiuyu
    [J]. The Journal of China Universities of Posts and Telecommunications, 2021, 28 (06) : 65 - 81
  • [34] Kernel Parameter Optimization in Stretched Kernel-Based Fuzzy Clustering
    Lu, Chunhong
    Zhu, Zhaomin
    Gu, Xiaofeng
    [J]. PARTIALLY SUPERVISED LEARNING, PSL 2013, 2013, 8193 : 49 - 57
  • [35] OPTIMAL KERNEL BANDWIDTH ESTIMATION FOR HYPERSPECTRAL KERNEL-BASED ANOMALY DETECTION
    Kwon, Heesung
    Gurram, Prudhvi
    [J]. 2010 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2010, : 2812 - 2815
  • [36] Kernel-Based Fuzzy Clustering of Interval Data
    Pimentel, Bruno A.
    da Costa, Anderson F. B. F.
    de Souza, Renata M. C. R.
    [J]. IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ 2011), 2011, : 497 - 501
  • [37] A Kernel-Based Core Growing Clustering Method
    Hsieh, T. W.
    Taur, J. S.
    Tao, C. W.
    Kung, S. Y.
    [J]. INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2009, 24 (04) : 441 - 458
  • [38] Mercer kernel-based clustering in feature space
    Girolami, M
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS, 2002, 13 (03): : 780 - 784
  • [39] A New Log Kernel-Based Possibilistic Clustering
    Tushir, Meena
    Nigam, Jyotsna
    [J]. SOFTWARE ENGINEERING (CSI 2015), 2019, 731 : 139 - 152
  • [40] A new kernel-based algorithm for online clustering
    Boubacar, HA
    Lecoeuche, S
    [J]. ARTIFICIAL NEURAL NETWORKS: FORMAL MODELS AND THEIR APPLICATIONS - ICANN 2005, PT 2, PROCEEDINGS, 2005, 3697 : 583 - 588