Heisenberg scaling in Gaussian quantum metrology

被引:29
|
作者
Friis, Nicolai [1 ,2 ]
Skotiniotis, Michalis [2 ]
Fuentes, Ivette [3 ]
Duer, Wolfgang [2 ]
机构
[1] Austrian Acad Sci, Inst Quantum Opt & Quantum Informat, A-6020 Innsbruck, Austria
[2] Univ Innsbruck, Inst Theoret Phys, A-6020 Innsbruck, Austria
[3] Univ Vienna, Fac Phys, A-1090 Vienna, Austria
基金
英国工程与自然科学研究理事会; 奥地利科学基金会;
关键词
D O I
10.1103/PhysRevA.92.022106
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We address the issue of precisely estimating small parameters encoded in a general linear transformation of the modes of a bosonic quantum field. Such Bogoliubov transformations frequently appear in the context of quantum optics. We provide a set of instructions for computing the quantum Fisher information for arbitrary pure initial states. We show that the maximally achievable precision of estimation is inversely proportional to the squared average particle number and that such Heisenberg scaling requires nonclassical but not necessarily entangled states. Our method further allows us to quantify losses in precision arising from being able to monitor only finitely many modes, for which we identify a lower bound.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Heisenberg-limited single-mode quantum metrology in a superconducting circuit
    Wang, W.
    Wu, Y.
    Ma, Y.
    Cai, W.
    Hu, L.
    Mu, X.
    Xu, Y.
    Chen, Zi-Jie
    Wang, H.
    Song, Y. P.
    Yuan, H.
    Zou, C-L
    Duan, L-M
    Sun, L.
    [J]. NATURE COMMUNICATIONS, 2019, 10 (1)
  • [42] Optimal measurements for quantum fidelity between Gaussian states and its relevance to quantum metrology
    Oh, Changhun
    Lee, Changhyoup
    Banchi, Leonardo
    Lee, Su-Yong
    Rockstuhl, Carsten
    Jeong, Hyunseok
    [J]. PHYSICAL REVIEW A, 2019, 100 (01)
  • [43] Heisenberg scaling with weak measurement: a quantum state discrimination point of view
    Jordan A.N.
    Tollaksen J.
    Troupe J.E.
    Dressel J.
    Aharonov Y.
    [J]. Quantum Studies: Mathematics and Foundations, 2015, 2 (1) : 5 - 15
  • [44] Quantum metrology with Fock and even coherent states: Parity detection approaches to the Heisenberg limit
    Hu, Li-Yun
    Wei, Chao-Ping
    Huang, Jie-Hui
    Liu, Cun-Jin
    [J]. OPTICS COMMUNICATIONS, 2014, 323 : 68 - 76
  • [45] Heisenberg-limited quantum sensing and metrology with superpositions of twin-Fock states
    Gerry, Christopher C.
    Mimih, Jihane
    [J]. ADVANCES IN PHOTONICS OF QUANTUM COMPUTING, MEMORY, AND COMMUNICATION IV, 2011, 7948
  • [46] Heisenberg Limit Superradiant Superresolving Metrology
    Wang, Da-Wei
    Scully, Marlan O.
    [J]. PHYSICAL REVIEW LETTERS, 2014, 113 (08)
  • [47] Non-Gaussian entangled states and quantum metrology with ultracold atomic ensemble
    Lu Bo
    Han Cheng-Yin
    Zhuang Min
    Ke Yong-Guan
    Huang Jia-Hao
    Lee Chao-Hong
    [J]. ACTA PHYSICA SINICA, 2019, 68 (04)
  • [48] Quantum Metrology with Two-Mode Squeezed Vacuum: Parity Detection Beats the Heisenberg Limit
    Anisimov, Petr M.
    Raterman, Gretchen M.
    Chiruvelli, Aravind
    Plick, William N.
    Huver, Sean D.
    Lee, Hwang
    Dowling, Jonathan P.
    [J]. PHYSICAL REVIEW LETTERS, 2010, 104 (10)
  • [49] Quantum correlations in optical metrology: Heisenberg-limited phase estimation without mode entanglement
    Sahota, Jaspreet
    Quesada, Nicolas
    [J]. PHYSICAL REVIEW A, 2015, 91 (01):
  • [50] Exotic versus conventional scaling and universality in a disordered bilayer quantum Heisenberg antiferromagnet
    Sknepnek, R
    Vojta, T
    Vojta, M
    [J]. PHYSICAL REVIEW LETTERS, 2004, 93 (09) : 097201 - 1