Generalized exponential autoregressive models for nonlinear time series: Stationarity, estimation and applications

被引:71
|
作者
Chen, Guang-yong [1 ,3 ]
Gan, Min [2 ,3 ,4 ]
Chen, Guo-long [3 ,4 ]
机构
[1] Fuzhou Univ, Ctr Discrete Math & Theoret Comp Sci, Fuzhou, Fujian, Peoples R China
[2] Fuzhou Univ, Key Lab Intelligent Metro Univ Fujian, Fuzhou, Fujian, Peoples R China
[3] Fuzhou Univ, Fujian Prov Key Lab Network Comp & Intelligent In, Fuzhou, Fujian, Peoples R China
[4] Fuzhou Univ, Coll Math & Comp Sci, Fuzhou 350116, Fujian, Peoples R China
基金
中国国家自然科学基金;
关键词
Generalized exponential autoregressive (GExpAR); Stationary conditions; Variable projection method; Time series; NEURAL-NETWORK; LEAST-SQUARES; ERGODICITY; SELECTION;
D O I
10.1016/j.ins.2018.01.029
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The generalized exponential autoregressive (GExpAR) models are extensions of the classic exponential autoregressive (ExpAR) model with much more flexibility. In this paper, we first review some development of the ExpAR models, and then discuss the stationary conditions of the GExpAR model. A new estimation algorithm based on the variable projection method is proposed for the GExpAR models. Finally, the models are applied to two real world time series modeling and prediction. Comparison results show that (i) the proposed estimation approach is much more efficient than the classic method, (ii) the GExpAR models are more powerful in modeling the nonlinear time series. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:46 / 57
页数:12
相关论文
共 50 条
  • [31] Estimation of nonparametric autoregressive time series models under dynamical constraints
    Biscay, RJ
    Lavielle, M
    Ludeña, C
    [J]. JOURNAL OF TIME SERIES ANALYSIS, 2005, 26 (03) : 371 - 397
  • [32] Generalized quasi maximum likelihood estimation for generalized autoregressive score models: simulations and real applications
    Gammoudi, Imed
    Nani, Asma
    El Ghourabi, Mohamed
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2021, 50 (11) : 3338 - 3363
  • [33] Gradient-based Parameter Estimation for a Nonlinear Exponential Autoregressive Time-series Model by Using the Multi-innovation
    Jian Pan
    Yuqing Liu
    Jun Shu
    [J]. International Journal of Control, Automation and Systems, 2023, 21 : 140 - 150
  • [34] Gradient-based Parameter Estimation for a Nonlinear Exponential Autoregressive Time-series Model by Using the Multi-innovation
    Pan, Jian
    Liu, Yuqing
    Shu, Jun
    [J]. INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, 2023, 21 (01) : 140 - 150
  • [35] A generalized Burr mixture autoregressive models for modeling non linear time series
    Low, Victor Jian Ming
    Khoo, Wooi Chen
    Khoo, Hooi Ling
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2024, 53 (19) : 6832 - 6851
  • [36] EEG time series analysis with exponential autoregressive modelling
    Balli, Tugce
    Palaniappan, Ramaswamy
    [J]. 2008 CANADIAN CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING, VOLS 1-4, 2008, : 460 - 463
  • [37] An Exponential Autoregressive Time Series Model for Complex Data
    Hesamian, Gholamreza
    Torkian, Faezeh
    Johannssen, Arne
    Chukhrova, Nataliya
    [J]. MATHEMATICS, 2023, 11 (19)
  • [38] Hysteretic autoregressive time series models
    Li, Guodong
    Guan, Bo
    Li, Wai Keung
    Yu, Philip L. H.
    [J]. BIOMETRIKA, 2015, 102 (03) : 717 - 723
  • [39] ESTIMATION OF MULTIVARIATE NONLINEAR TIME-SERIES MODELS
    THAVANESWARAN, A
    ABRAHAM, B
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1991, 29 (03) : 351 - 363
  • [40] Estimation in a class of nonlinear heteroscedastic time series models
    Ngatchou-Wandji, Joseph
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2008, 2 : 40 - 62