Machine Learning-Based Models for Assessing Impacts Before, During and After Hurricane Florence

被引:0
|
作者
Harvey, Julie [1 ]
Kumar, Sathish [1 ]
Bao, Shaowu [1 ]
机构
[1] Coastal Carolina Univ, Conway, SC 29528 USA
来源
2019 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI 2019) | 2019年
关键词
artificial intelligence; bayes methods; boosting; classification; correlation; hurricanes; machine learning; support vector machines;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Social media provides an abundant amount of real-time information that can be used before, during, and after extreme weather events. Government officials, emergency managers, and other decision makers can use social media data for decision-making, preparation, and assistance. Social media data and cloud cover temperature as physical sensor data was analyzed in this study using machine learning techniques. Data was collected from Twitter regarding Hurricane Florence from September 11, 2018 through September 20, 2018. Natural language processing models were developed to demonstrate sentiment among the data. Forecasting models for future events were developed for better emergency management during extreme weather events. Different machine learning algorithms and natural language processing techniques were used to examine sentiment classification. The approach is multi-modal, which will help stakeholders develop a more comprehensive understanding of the social impacts of a storm and how to help prepare for future storms. Naive Bayes classifier displayed the highest accuracy for this data. The results demonstrate that machine learning and natural language processing techniques, using Twitter data, are a practical method for sentiment analysis and can be used by decision makers for better emergency management decisions.
引用
收藏
页码:714 / 721
页数:8
相关论文
共 50 条
  • [21] Machine learning-based models for predicting clinical outcomes after surgery in unilateral primary aldosteronism
    Kaneko, Hiroki
    Umakoshi, Hironobu
    Ogata, Masatoshi
    Wada, Norio
    Ichijo, Takamasa
    Sakamoto, Shohei
    Watanabe, Tetsuhiro
    Ishihara, Yuki
    Tagami, Tetsuya
    Iwahashi, Norifusa
    Fukumoto, Tazuru
    Terada, Eriko
    Katsuhara, Shunsuke
    Yokomoto-Umakoshi, Maki
    Matsuda, Yayoi
    Sakamoto, Ryuichi
    Ogawa, Yoshihiro
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [22] Machine Learning-based Models for Predicting the Penetration Depth of Concrete
    Li M.
    Wu H.
    Dong H.
    Ren G.
    Zhang P.
    Huang F.
    Binggong Xuebao/Acta Armamentarii, 2023, 44 (12): : 3771 - 3782
  • [23] Machine learning-based prediction models for accidental hypothermia patients
    Okada, Yohei
    Matsuyama, Tasuku
    Morita, Sachiko
    Ehara, Naoki
    Miyamae, Nobuhiro
    Jo, Takaaki
    Sumida, Yasuyuki
    Okada, Nobunaga
    Watanabe, Makoto
    Nozawa, Masahiro
    Tsuruoka, Ayumu
    Fujimoto, Yoshihiro
    Okumura, Yoshiki
    Kitamura, Tetsuhisa
    Iiduka, Ryoji
    Ohtsuru, Shigeru
    JOURNAL OF INTENSIVE CARE, 2021, 9 (01)
  • [24] Machine learning-based construction site dynamic risk models
    Gondia, Ahmed
    Moussa, Ahmed
    Ezzeldin, Mohamed
    El-Dakhakhni, Wael
    TECHNOLOGICAL FORECASTING AND SOCIAL CHANGE, 2023, 189
  • [25] Machine Learning-Based Models for Prediction of Toxicity Outcomes in Radiotherapy
    Isaksson, Lars J.
    Pepa, Matteo
    Zaffaroni, Mattia
    Marvaso, Giulia
    Alterio, Daniela
    Volpe, Stefania
    Corrao, Giulia
    Augugliaro, Matteo
    Starzynska, Anna
    Leonardi, Maria C.
    Orecchia, Roberto
    Jereczek-Fossa, Barbara A.
    FRONTIERS IN ONCOLOGY, 2020, 10
  • [26] Machine Learning-Based Predictive Models for Detection of Cardiovascular Diseases
    Ogunpola, Adedayo
    Saeed, Faisal
    Basurra, Shadi
    Albarrak, Abdullah M.
    Qasem, Sultan Noman
    DIAGNOSTICS, 2024, 14 (02)
  • [27] Machine Learning-Based Models Enhance the Prediction of Prostate Cancer
    Chen, Sunmeng
    Jian, Tengteng
    Chi, Changliang
    Liang, Yi
    Liang, Xiao
    Yu, Ying
    Jiang, Fengming
    Lu, Ji
    FRONTIERS IN ONCOLOGY, 2022, 12
  • [28] Introducing machine learning-based prediction models in the perioperative setting
    Gogenur, Ismail
    BRITISH JOURNAL OF SURGERY, 2023, 110 (05) : 533 - 535
  • [29] Problems associated with the deployment of machine learning-based models in health
    Cohen, Joseph Paul
    Cao, Tianshi
    Viviano, Joseph D.
    Huang, Chin-Wei
    Fralick, Michael
    Ghassemi, Marzyeh
    Mamdani, Muhammad
    Greiner, Russell
    Bengio, Yoshua
    CANADIAN MEDICAL ASSOCIATION JOURNAL, 2021, 193 (44) : E1716 - E1719
  • [30] Assessing Machine Learning and Deep Learning-based approaches for SAG mill Energy consumption
    Lopez, Pedro
    Reyes, Ignacio
    Risso, Nathalie
    Aguilera, Cristhian
    Campos, Pedro G.
    Momayez, Moe
    Contreras, Diego
    2021 IEEE CHILEAN CONFERENCE ON ELECTRICAL, ELECTRONICS ENGINEERING, INFORMATION AND COMMUNICATION TECHNOLOGIES (IEEE CHILECON 2021), 2021, : 886 - 891