A New Public Key Signature Scheme based on Quadratic Polynomials

被引:5
|
作者
Yuan, Feng [1 ]
Zhao, Shangwei [1 ]
Ou, Haiwen [1 ]
Xu, Shengwei [1 ]
机构
[1] Beijing Elect Sci & Technol Inst, Beijing, Peoples R China
关键词
public key cryptography; polynomials; mapping; attack; finite field; CRYPTANALYSIS; CRYPTOSYSTEMS; SFLASH; SQUARE; HFE; XL;
D O I
10.1109/MINES.2012.39
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper proposes a new public key signature scheme based on multivariate quadratic polynomials over a finite field with odd prime characteristic. This signature scheme has a very simple internal transformation, allowing for efficient signature generation and verification. The security of the scheme is analyzed in detail. The result indicates that the new signature scheme can withstand all known attacks effectively.
引用
收藏
页码:8 / 11
页数:4
相关论文
共 50 条
  • [31] CyclicRainbow - A Multivariate Signature Scheme with a Partially Cyclic Public Key
    Petzoldt, Albrecht
    Bulygin, Stanislav
    Buchmann, Johannes
    PROGRESS IN CRYPTOLOGY - INDOCRYPT 2010, 2010, 6498 : 33 - +
  • [32] A new public key scheme based on DRSA and generalized GDLP
    Goswami, Pinkimani
    Singh, Madan Mohan
    Bhuyan, Bubu
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2016, 8 (04)
  • [33] A New Public Key Cryptographic Scheme
    Yuan, Feng
    Ou, Haiwen
    Xu, Shengwei
    SENSORS, MEASUREMENT AND INTELLIGENT MATERIALS, PTS 1-4, 2013, 303-306 : 1944 - 1947
  • [34] New Public-key Quantum Signature Scheme with Quantum One-Way Function
    Xiangjun Xin
    Zhuo Wang
    Qianqian He
    Qinglan Yang
    Fagen Li
    International Journal of Theoretical Physics, 2019, 58 : 3282 - 3294
  • [35] New Public-key Quantum Signature Scheme with Quantum One-Way Function
    Xin, Xiangjun
    Wang, Zhuo
    He, Qianqian
    Yang, Qinglan
    Li, Fagen
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2019, 58 (10) : 3282 - 3294
  • [37] A public key cryptosystem based on sparse polynomials
    Grant, D
    Krastev, K
    Lieman, D
    Shparlinski, I
    CODING THEORY, CRYPTOGRAPHY AND RELATED AREAS, 2000, : 114 - 121
  • [38] Identity-based ring signature scheme based on quadratic residues
    Xiong, Hu
    Qin, Zhiguang
    Li, Fagen
    High Technology Letters, 2009, 15 (01) : 94 - 100
  • [39] REESSE1-E public-key signature scheme based on variable combination
    Su, Sheng-Hui
    Lü, Shu-Wang
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2010, 38 (01): : 234 - 238