Alexander invariants of complex hyperplane arrangements

被引:18
|
作者
Cohen, DC [1 ]
Suciu, AI
机构
[1] Louisiana State Univ, Dept Math, Baton Rouge, LA 70803 USA
[2] Northeastern Univ, Dept Math, Boston, MA 02115 USA
关键词
arrangement; braid monodromy; Alexander invariant; Chen groups;
D O I
10.1090/S0002-9947-99-02206-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let A be an arrangement of n complex hyperplanes. The fundamental group of the complement of A is determined by a braid monodromy homomorphism, alpha : F-s --> P-n. Using the Gassner representation of the pure braid group, we find an explicit presentation for the Alexander invariant of A. From this presentation, we obtain combinatorial lower bounds for the ranks of the Chen groups of A. We also provide a combinatorial criterion for when these lower bounds are attained.
引用
收藏
页码:4043 / 4067
页数:25
相关论文
共 50 条
  • [11] CUTTING HYPERPLANE ARRANGEMENTS
    MATOUSEK, J
    [J]. DISCRETE & COMPUTATIONAL GEOMETRY, 1991, 6 (05) : 385 - 406
  • [12] The Topology of Hyperplane Arrangements
    Randell, Richard
    [J]. TOPOLOGY OF ALGEBRAIC VARIETIES AND SINGULARITIES, 2011, 538 : 309 - 318
  • [13] Circle-valued Morse theory for complex hyperplane arrangements
    Kohno, Toshitake
    Pajitnov, Andrei
    [J]. FORUM MATHEMATICUM, 2015, 27 (04) : 2113 - 2128
  • [14] Hyperplane Arrangements in polymake
    Kastner, Lars
    Panizzut, Marta
    [J]. MATHEMATICAL SOFTWARE - ICMS 2020, 2020, 12097 : 232 - 240
  • [15] Reducibility of hyperplane arrangements
    Guang-feng Jiang
    Jian-ming Yu
    [J]. Science in China Series A: Mathematics, 2007, 50 : 689 - 697
  • [16] Reducibility of hyperplane arrangements
    Jiang, Guang-feng
    Yu, Jian-ming
    [J]. SCIENCE IN CHINA SERIES A-MATHEMATICS, 2007, 50 (05): : 689 - 697
  • [17] Twisted Alexander invariants of complex hypersurface complements
    Maxim, Laurentiu
    Wong, Kaiho Tommy
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2018, 148 (05) : 1049 - 1073
  • [18] VANISHING RESULTS FOR THE AOMOTO COMPLEX OF REAL HYPERPLANE ARRANGEMENTS VIA MINIMALITY
    Bailet, Pauline
    Yoshinaga, Masahiko
    [J]. JOURNAL OF SINGULARITIES, 2016, 14 : 74 - 90
  • [19] Hyperplane arrangements and Lefschetz's hyperplane section theorem
    Yoshinaga, Masahiko
    [J]. KODAI MATHEMATICAL JOURNAL, 2007, 30 (02) : 157 - 194
  • [20] HYPERGEOMETRIC FUNCTIONS AND HYPERPLANE ARRANGEMENTS
    Jambu, Michel
    [J]. ALGEBRAIC APPROACH TO DIFFERENTIAL EQUATIONS, 2010, : 210 - 224