Chaotic billiards seen as mirror cabinets

被引:4
|
作者
Kruelle, CA
Kittel, A
Peinke, J
Richter, R
Huebener, RP
机构
[1] UNIV BAYREUTH,INST PHYS,D-95440 BAYREUTH,GERMANY
[2] WEIZMANN INST SCI,DEPT COMPLEX SYST,IL-76100 REHOVOT,ISRAEL
来源
PHYSICA D | 1997年 / 102卷 / 3-4期
关键词
chaotic systems; fractals; billiards; classical optics; ray tracing;
D O I
10.1016/S0167-2789(96)00241-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A new visualization method is found for investigating the complex ray dynamics inside chaotic billiards. Regarding the billiards as mirror cabinets the resulting system of virtual images of the mirror walls reveals a fractal structure which corresponds to the chaotic trajectories of light rays or billiard balls inside.
引用
收藏
页码:227 / 233
页数:7
相关论文
共 50 条
  • [21] Klein paradox in chaotic Dirac billiards
    Rodrigues da Silva, A. F. M.
    Barros, M. S. M.
    Nascimento Junior, A. J.
    Barbosa, A. L. R.
    Ramos, J. G. G. S.
    ANNALS OF PHYSICS, 2019, 405 : 256 - 273
  • [22] Chaotic Properties of Billiards in Circular Polygons
    Clarke, Andrew
    Ramirez-Ros, Rafael
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2024, 405 (11)
  • [23] Scattering Properties of Chaotic Microwave Billiards
    Stoeckmann, H. -J
    ACTA PHYSICA POLONICA A, 2009, 116 (05) : 783 - 789
  • [24] Chaotic dynamics in refraction galactic billiards
    Barutello, Vivina L.
    De Blasi, Irene
    Terracini, Susanna
    NONLINEARITY, 2023, 36 (08) : 4209 - 4246
  • [25] Scarring of Dirac fermions in chaotic billiards
    Ni, Xuan
    Huang, Liang
    Lai, Ying-Cheng
    Grebogi, Celso
    PHYSICAL REVIEW E, 2012, 86 (01):
  • [26] Chaotic focusing billiards in higher dimensions
    Bunimovich, L
    Casati, G
    Guarneri, I
    PHYSICAL REVIEW LETTERS, 1996, 77 (14) : 2941 - 2944
  • [27] Density of states of chaotic Andreev billiards
    Kuipers, Jack
    Engl, Thomas
    Berkolaiko, Gregory
    Petitjean, Cyril
    Waltner, Daniel
    Richter, Klaus
    PHYSICAL REVIEW B, 2011, 83 (19):
  • [28] CHAOTIC BILLIARDS GENERATED BY ARITHMETIC GROUPS
    BOGOMOLNY, EB
    GEORGEOT, B
    GIANNONI, MJ
    SCHMIT, C
    PHYSICAL REVIEW LETTERS, 1992, 69 (10) : 1477 - 1480
  • [29] Decay of correlations and control of chaotic billiards
    Willox, R
    Antoniou, I
    Levitan, J
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1997, 34 (2-4) : 391 - 398
  • [30] Numerical experiments on quantum chaotic billiards
    de Menezes, D. D.
    Jar e Silva, M.
    de Aguiar, F. M.
    CHAOS, 2007, 17 (02)