SWATH proteomic profiling of prostate cancer cells identifies NUSAP1 as a potential molecular target for Galiellalactone

被引:15
|
作者
Garrido-Rodriguez, Martin [1 ,2 ,3 ]
Ortea, Ignacio [1 ,3 ]
Calzado, Marco A. [1 ,2 ,3 ]
Munoz, Eduardo [1 ,2 ,3 ]
Garcia, Victor [1 ,3 ]
机构
[1] Inst Maimonides Invest Biomed Cordoba IMIBIC, Cordoba, Spain
[2] Univ Cordoba, Dept Biol & Celular Fisiol & Immunol, Cordoba, Spain
[3] Hosp Univ Reina Sofia, Cordoba, Spain
关键词
Galiellalactone; Cell cycle; Prostate cancer; SWATH; NUSAP1; Confluence-dependent resistance; NF-KAPPA-B; CONFLUENCE-DEPENDENT RESISTANCE; ANDROGEN DEPRIVATION; CYCLE ARREST; CONSTITUTIVE ACTIVATION; TRANSCRIPTION FACTOR; STAT3; INHIBITION; EXPRESSION; APOPTOSIS;
D O I
10.1016/j.jprot.2018.10.012
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Galiellalactone (GL) is a fungal metabolite that presents antitumor and antiinflammatory activities in vitro and in vivo. Previous studies have shown that GL targets NF-kappa B and STAT3 pathways and induces G(2)/M cell cycle arrest in androgen-insensitive prostate cancer cells. In this study, we show that GL-induced cell cycle arrest is independent of the NF-KB and STAT3 pathways in DU145 and PC-3 cells, and also that GL did not affect cell cycling in androgen-sensitive prostate cancer cells such as LNCaP and 22Rv1 cells. In addition, we showed confluence resistance to GL in DU145 cells. Using a SWATH proteomic approach we identified a down-regulation of Nucleolar and spindle associated protein 1 (NUSAP1) under DU145 confluence. Moreover the expression of NUSAP1 in LNCaP cells is low compared to DU145 cells. The inhibition of NUSAP1 by siRNAs induced resistance to GL in DU145 cells, suggesting that NUSAP1 may be a target for GL and could be useful as a biomarker for the responsiveness of the antitumor activity of GL. Altogether, our finding shed light to the potential of GL to be developed as a novel treatment of castration resistance prostate cancer.
引用
收藏
页码:217 / 229
页数:13
相关论文
共 50 条
  • [31] Molecular Profiling of Head and Neck Cancer Patient Derived Xenografts Identifies FGFR As a Target for Radiosensitization
    Baschnagel, A. M.
    Fisher, M.
    Miller, M.
    Able, L.
    Li, C.
    Brennan, S.
    Iyer, G.
    Harari, P. M.
    Kimple, R. J.
    [J]. INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2018, 102 (03): : S188 - S188
  • [32] The need to embrace molecular profiling of tumor cells in prostate and bladder cancer
    Duggan, BJ
    McKnight, JJ
    Williamson, KE
    Loughrey, M
    O'Rourke, D
    Hamilton, PW
    Johnston, SR
    Schulman, CC
    Zlotta, AR
    [J]. CLINICAL CANCER RESEARCH, 2003, 9 (04) : 1240 - 1247
  • [33] Differential Proteomic Profiling Identifies Novel Molecular Targets of Paclitaxel and Phytoagent Deoxyelephantopin against Mammary Adenocarcinoma Cells
    Lee, Wai-Leng
    Wen, Tuan-Nan
    Shiau, Jeng-Yuan
    Shyur, Lie-Fen
    [J]. JOURNAL OF PROTEOME RESEARCH, 2010, 9 (01) : 237 - 253
  • [34] Differential proteomic profiling identifies novel molecular targets of paclitaxel and phytoagent deoxyelephantopin against mammary adenocarcinoma cells
    Wen, Tuan-Nan
    Lee, Wai-Leng
    Shiau, Jeng-Yuan
    Shyur, Lie-Fen
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2009, 238
  • [35] Gene expression profiling of prostate tissue identifies chromatin regulation as a potential link between obesity and lethal prostate cancer
    Ebot, Ericka M.
    Gerke, Travis
    Labbe, David P.
    Sinnott, Jennifer A.
    Zadra, Giorgia
    Rider, Jennifer R.
    Tyekucheva, Svitlana
    Wilson, Kathryn M.
    Kelly, Rachel S.
    Shui, Irene M.
    Loda, Massimo
    Kantoff, Philip W.
    Finn, Stephen
    Heiden, Matthew G. Vander
    Brown, Myles
    Giovannucci, Edward L.
    Mucci, Lorelei A.
    [J]. CANCER, 2017, 123 (21) : 4130 - 4138
  • [36] Characterization of the ERG-regulated Kinome in Prostate Cancer Identifies TNIK as a Potential Therapeutic Target
    Lee, Rachel S.
    Zhang, Luxi
    Berger, Adeline
    Lawrence, Mitchell G.
    Song, Jiangning
    Niranjan, Birunthi
    Davies, Rebecca G.
    Lister, Natalie L.
    Sandhu, Shahneen K.
    Rubin, Mark A.
    Risbridger, Gail P.
    Taylor, Renea A.
    Rickman, David S.
    Horvath, Lisa G.
    Daly, Roger J.
    [J]. NEOPLASIA, 2019, 21 (04): : 389 - 400
  • [37] Is EGR1 a potential target for prostate cancer therapy?
    Gitenay, Delphine
    Baron, Veronique T.
    [J]. FUTURE ONCOLOGY, 2009, 5 (07) : 993 - 1003
  • [38] TREK-1 is a novel molecular target in prostate cancer
    Voloshyna, Iryna
    Besana, Alessandra
    Castillo, Mireia
    Matos, Tulio
    Weinstein, I. Bernard
    Mansukhani, Mahesh
    Robinson, Richard B.
    Cordon-Cardo, Carlos
    Feinmark, Steven J.
    [J]. CANCER RESEARCH, 2008, 68 (04) : 1197 - 1203
  • [39] Itraq-facilitated proteomic analysis of human prostate cancer cells identifies proteins associated with progression
    Rehman, I.
    Glen, A.
    Gan, C. S.
    Hamdy, F. C.
    Eaton, C. L.
    Cross, S. S.
    Catto, J. W. F.
    Wright, P. C.
    [J]. EUROPEAN UROLOGY SUPPLEMENTS, 2008, 7 (03) : 252 - 252
  • [40] Systemic surfaceome profiling identifies target antigens for immune-based therapy in subtypes of advanced prostate cancer
    Lee, John K.
    Bangayan, Nathanael J.
    Chai, Timothy
    Smith, Bryan A.
    Pariva, Tiffany E.
    Yun, Sangwon
    Vashisht, Ajay
    Zhang, Qingfu
    Park, Jung Wook
    Corey, Eva
    Huang, Jiaoti
    Graeber, Thomas G.
    Wohlschlegel, James
    Witte, Owen N.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2018, 115 (19) : E4473 - E4482