Post-decoherence density matrix propagator for quantum Brownian motion

被引:34
|
作者
Halliwell, J
Zoupas, A
机构
[1] Theory Group, Blackett Laboratory, London
关键词
D O I
10.1103/PhysRevD.55.4697
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Using the path integral representation of the density matrix propagator of quantum Brownian motion, we derive its asymptotic form for times greater than the so-called localization time ((h) over bar/gamma kT)(1/2), where gamma is the dissipation and T the temperature of the thermal environment. The localization time is typically greater than the decoherence time, but much shorter than the relaxation time gamma(-1). We use this result to show that the reduced density operator rapidly evolves into a state which is approximately diagonal in a set of generalized coherent states. We thus reproduce, using a completely different method, a result we previously obtained using the quantum state diffusion picture [Phys. Rev. D 52, 7294 (199-5)]. We also go beyond this earlier result, in that we derive an explicit expression for the weighting of each phase space localized state in the approximately diagonal density matrix, as a function of the initial state. For sufficiently long times it is equal to the Wigner function, and we confirm that the Wigner function is positive for times greater than the localization time (multiplied by a number of order 1).
引用
收藏
页码:4697 / 4704
页数:8
相关论文
共 50 条
  • [41] Quantum evolution represented by Brownian motion
    Shao, Jiushu
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2023, 159 (02):
  • [42] Quantum Brownian motion.: II
    Gaioli, FH
    Alvarez, ETG
    Arbó, DG
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1999, 38 (01) : 183 - 198
  • [43] Quantum Brownian Motion. II
    Fabian H. Gaioli
    Edgardo T. Garcia Alvarez
    Diego G. Arbo
    [J]. International Journal of Theoretical Physics, 1999, 38 : 183 - 198
  • [44] Kinetic description of quantum Brownian motion
    B. Vacchini
    F. Petruccione
    [J]. The European Physical Journal Special Topics, 2008, 159 : 135 - 141
  • [45] Quantum Brownian motion of a magnetic skyrmion
    Psaroudaki, Christina
    Aseev, Pavel
    Loss, Daniel
    [J]. PHYSICAL REVIEW B, 2019, 100 (13)
  • [46] Dynamical objectivity in quantum Brownian motion
    Tuziemski, J.
    Korbicz, J. K.
    [J]. EPL, 2015, 112 (04)
  • [47] Kinetic description of quantum Brownian motion
    Vacchini, B.
    Petruccione, F.
    [J]. EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2008, 159 (1): : 135 - 141
  • [48] Phase coherence in quantum Brownian motion
    Blasone, M
    Srivastava, YN
    Vitiello, G
    Widom, A
    [J]. ANNALS OF PHYSICS, 1998, 267 (01) : 61 - 74
  • [49] BROWNIAN-MOTION OF A QUANTUM OSCILLATOR
    CARUSOTTO, S
    [J]. PHYSICAL REVIEW A, 1975, 11 (04) : 1397 - 1406
  • [50] Lindblad model of quantum Brownian motion
    Lampo, Aniello
    Lim, Soon Hoe
    Wehr, Jan
    Massignan, Pietro
    Lewenstein, Maciej
    [J]. PHYSICAL REVIEW A, 2016, 94 (04)