A locking-free immersed finite element method for planar elasticity interface problems

被引:72
|
作者
Lin, Tao [1 ]
Sheen, Dongwoo [2 ]
Zhang, Xu [1 ]
机构
[1] Virginia Tech, Dept Math, Blacksburg, VA 24061 USA
[2] Seoul Natl Univ, Dept Math, Seoul 151747, South Korea
基金
美国国家科学基金会;
关键词
Elasticity interface problems; Nonconforming finite element; Immersed finite element; Cartesian mesh; Locking-free; DISCONTINUOUS GALERKIN; LINEAR ELASTICITY; MICROSTRUCTURAL EVOLUTION; EQUATIONS; SIMULATION; FAMILY; SPACE;
D O I
10.1016/j.jcp.2013.03.053
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This article proposes a nonconforming immersed finite element (IFE) method for solving planar elasticity interface problems with structured (or Cartesian) meshes even if the material interface has a nontrivial geometry. IFE functions developed in this article are applicable to arbitrary configurations of elasticity materials and interface locations. Optimal approximation capability is observed for this new IFE space. The displacement Galerkin method based on this IFE space is robust (locking-free). Numerical experiments are presented to demonstrate that the IFE solution converges optimally for both compressible and nearly incompressible materials. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:228 / 247
页数:20
相关论文
共 50 条
  • [41] A locking-free locally conservative hybridized scheme for elasticity problems
    Jeon, Youngmok
    Sheen, Dongwoo
    [J]. JAPAN JOURNAL OF INDUSTRIAL AND APPLIED MATHEMATICS, 2013, 30 (03) : 585 - 603
  • [42] Locking-free finite element method for a bending moment formulation of Timoshenko beams
    Lepe, Felipe
    Mora, David
    Rodriguez, Rodolfo
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2014, 68 (03) : 118 - 131
  • [43] An immersed finite element method for elliptic interface problems on surfaces
    Guo, Changyin
    Xiao, Xufeng
    Feng, Xinlong
    Tan, Zhijun
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2023, 131 : 54 - 67
  • [44] A Nonconforming Immersed Finite Element Method for Elliptic Interface Problems
    Tao Lin
    Dongwoo Sheen
    Xu Zhang
    [J]. Journal of Scientific Computing, 2019, 79 : 442 - 463
  • [45] A Nonconforming Immersed Finite Element Method for Elliptic Interface Problems
    Lin, Tao
    Sheen, Dongwoo
    Zhang, Xu
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2019, 79 (01) : 442 - 463
  • [46] A Symmetric and Consistent Immersed Finite Element Method for Interface Problems
    Haifeng Ji
    Jinru Chen
    Zhilin Li
    [J]. Journal of Scientific Computing, 2014, 61 : 533 - 557
  • [47] An immersed discontinuous finite element method for Stokes interface problems
    Adjerid, Slimane
    Chaabane, Nabil
    Lin, Tao
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2015, 293 : 170 - 190
  • [48] A Symmetric and Consistent Immersed Finite Element Method for Interface Problems
    Ji, Haifeng
    Chen, Jinru
    Li, Zhilin
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2014, 61 (03) : 533 - 557
  • [49] A locking-free DPG method for linear elasticity with symmetric stresses
    Bramwell, Jamie
    Demkowicz, Leszek
    Gopalakrishnan, Jay
    Qiu, Weifeng
    [J]. NUMERISCHE MATHEMATIK, 2012, 122 (04) : 671 - 707
  • [50] Locking-free adaptive discontinuous Galerkin FEM for linear elasticity problems
    Wihler, Thomas P.
    [J]. MATHEMATICS OF COMPUTATION, 2006, 75 (255) : 1087 - 1102