Automated two-dimensional K-means clustering algorithm for unsupervised image segmentation

被引:19
|
作者
Yusoff, Intan Aidha [1 ]
Isa, Nor Ashidi Mat [1 ]
Hasikin, Khairunnisa [1 ]
机构
[1] Univ Sains Malaysia, Imaging & Intelligent Syst Res Team ISRT, Sch Elect & Elect Engn, Nibong Tebal 14300, Pulau Pinang, Malaysia
关键词
ENHANCEMENT;
D O I
10.1016/j.compeleceng.2012.11.013
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
This paper introduces the Automated Two-Dimensional K-Means (A2DKM) algorithm, a novel unsupervised clustering technique. The proposed technique differs from the conventional clustering techniques because it eliminates the need for users to determine the number of clusters. In addition, A2DKM incorporates local and spatial information of the data into the clustering analysis. A2DKM is qualitatively and quantitatively compared with the conventional clustering algorithms, namely, the K-Means (KM), Fuzzy C-Means (FCM), Moving K-Means (MKM), and Adaptive Fuzzy K-Means (AFKM) algorithms. The A2DKM outperforms these algorithms by producing more homogeneous segmentation results. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:907 / 917
页数:11
相关论文
共 50 条
  • [1] A k-means clustering algorithm initialization for unsupervised statistical satellite image segmentation
    Rekik, Ahmed
    Zribi, Mourad
    Benjelloun, Mohammed
    ben Hamida, Ahmed
    [J]. 2006 1ST IEEE INTERNATIONAL CONFERENCE ON E-LEARNING IN INDUSTRIAL ELECTRONICS, 2006, : 11 - +
  • [2] A contiguity-enhanced k-means clustering algorithm for unsupervised multispectral image segmentation
    Theiler, J
    Gisler, G
    [J]. ALGORITHMS, DEVICES, AND SYSTEMS FOR OPTICAL INFORMATION PROCESSING, 1997, 3159 : 108 - 118
  • [3] Unsupervised K-Means Clustering Algorithm
    Sinaga, Kristina P.
    Yang, Miin-Shen
    [J]. IEEE ACCESS, 2020, 8 : 80716 - 80727
  • [4] Image Segmentation using K-means Clustering Algorithm and Subtractive Clustering Algorithm
    Dhanachandra, Nameirakpam
    Manglem, Khumanthem
    Chanu, Yambem Jina
    [J]. ELEVENTH INTERNATIONAL CONFERENCE ON COMMUNICATION NETWORKS, ICCN 2015/INDIA ELEVENTH INTERNATIONAL CONFERENCE ON DATA MINING AND WAREHOUSING, ICDMW 2015/NDIA ELEVENTH INTERNATIONAL CONFERENCE ON IMAGE AND SIGNAL PROCESSING, ICISP 2015, 2015, 54 : 764 - 771
  • [5] K-means Iterative Fisher (KIF) unsupervised clustering algorithm applied to image texture segmentation
    Clausi, DA
    [J]. PATTERN RECOGNITION, 2002, 35 (09) : 1959 - 1972
  • [6] KmsGC: An Unsupervised Color Image Segmentation Algorithm Based on K-Means Clustering and Graph Cut
    Liang, Binmei
    Zhang, Jianzhou
    [J]. MATHEMATICAL PROBLEMS IN ENGINEERING, 2014, 2014
  • [7] Optimized K-means (OKM) clustering algorithm for image segmentation
    Siddiqui, F. U.
    Isa, N. A. Mat
    [J]. OPTO-ELECTRONICS REVIEW, 2012, 20 (03) : 216 - 225
  • [8] An improved K-means clustering algorithm in agricultural image segmentation
    Cheng, Huifeng
    Peng, Hui
    Liu, Shanmei
    [J]. PIAGENG 2013: IMAGE PROCESSING AND PHOTONICS FOR AGRICULTURAL ENGINEERING, 2013, 8761
  • [9] An improved K-means clustering algorithm for fish image segmentation
    Yao, Hong
    Duan, Qingling
    Li, Daoliang
    Wang, Jianping
    [J]. MATHEMATICAL AND COMPUTER MODELLING, 2013, 58 (3-4) : 784 - 792
  • [10] Adaptive Fuzzy Moving K-means Clustering Algorithm for Image Segmentation
    Isa, Nor Ashidi Mat
    Salamah, Samy A.
    Ngah, Umi Kalthum
    [J]. IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, 2009, 55 (04) : 2145 - 2153