An improved K-means clustering algorithm in agricultural image segmentation

被引:2
|
作者
Cheng, Huifeng [1 ]
Peng, Hui [1 ]
Liu, Shanmei [1 ]
机构
[1] Chongqing Technol & Business Univ, Coll Mech Engn, Chongqing 400067, Peoples R China
关键词
k-means clustering; image segmentation; HIS color space;
D O I
10.1117/12.2020131
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
Image segmentation is the first important step to image analysis and image processing. In this paper, according to color crops image characteristics, we firstly transform the color space of image from RGB to HIS, and then select proper initial clustering center and cluster number in application of mean-variance approach and rough set theory followed by clustering calculation in such a way as to automatically segment color component rapidly and extract target objects from background accurately, which provides a reliable basis for identification, analysis, follow-up calculation and process of crops images. Experimental results demonstrate that improved k-means clustering algorithm is able to reduce the computation amounts and enhance precision and accuracy of clustering.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] An improved K-means clustering algorithm for fish image segmentation
    Yao, Hong
    Duan, Qingling
    Li, Daoliang
    Wang, Jianping
    [J]. MATHEMATICAL AND COMPUTER MODELLING, 2013, 58 (3-4) : 784 - 792
  • [2] Application of Improved Genetic K-Means Clustering Algorithm in Image Segmentation
    Tan, Zhicun
    Lu, Ruihua
    [J]. PROCEEDINGS OF THE FIRST INTERNATIONAL WORKSHOP ON EDUCATION TECHNOLOGY AND COMPUTER SCIENCE, VOL II, 2009, : 625 - 628
  • [3] Medical image segmentation using K-MEANS clustering and improved watershed algorithm
    Ng, H. P.
    Ong, S. H.
    Foong, K. W. C.
    Goh, P. S.
    Nowinski, W. L.
    [J]. 7TH IEEE SOUTHWEST SYMPOSIUM ON IMAGE ANALYSIS AND INTERPRETATION, 2006, : 61 - +
  • [4] Image Segmentation using K-means Clustering Algorithm and Subtractive Clustering Algorithm
    Dhanachandra, Nameirakpam
    Manglem, Khumanthem
    Chanu, Yambem Jina
    [J]. ELEVENTH INTERNATIONAL CONFERENCE ON COMMUNICATION NETWORKS, ICCN 2015/INDIA ELEVENTH INTERNATIONAL CONFERENCE ON DATA MINING AND WAREHOUSING, ICDMW 2015/NDIA ELEVENTH INTERNATIONAL CONFERENCE ON IMAGE AND SIGNAL PROCESSING, ICISP 2015, 2015, 54 : 764 - 771
  • [5] Research on k-means Clustering Algorithm An Improved k-means Clustering Algorithm
    Shi Na
    Liu Xumin
    Guan Yong
    [J]. 2010 THIRD INTERNATIONAL SYMPOSIUM ON INTELLIGENT INFORMATION TECHNOLOGY AND SECURITY INFORMATICS (IITSI 2010), 2010, : 63 - 67
  • [6] Application of Improved K-means Clustering Algorithm in Customer Segmentation
    Li, Gang
    [J]. INFORMATION TECHNOLOGY APPLICATIONS IN INDUSTRY II, PTS 1-4, 2013, 411-414 : 1081 - 1084
  • [7] Optimized K-means (OKM) clustering algorithm for image segmentation
    Siddiqui, F. U.
    Isa, N. A. Mat
    [J]. OPTO-ELECTRONICS REVIEW, 2012, 20 (03) : 216 - 225
  • [8] Digital image clustering based on improved k-means algorithm
    Gao Xi
    Hu Zi-mu
    [J]. CHINESE JOURNAL OF LIQUID CRYSTALS AND DISPLAYS, 2020, 35 (02) : 173 - 179
  • [9] An Improved K-means Algorithm for Brain MRI Image Segmentation
    Liu, Jianwei
    Guo, Lei
    [J]. PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON MECHATRONICS, ROBOTICS AND AUTOMATION (ICMRA 2015), 2015, 15 : 1087 - 1090
  • [10] Color Image Segmentation via Improved K-Means Algorithm
    Kumar, Ajay
    Kumar, Shishir
    [J]. INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2016, 7 (03) : 46 - 53