Spatial implementation of evolutionary multiobjective algorithms with partial Lamarckian repair for multiobjective knapsack problems

被引:0
|
作者
Ishibuchi, H [1 ]
Narukawa, K [1 ]
机构
[1] Osaka Prefecture Univ, Grad Sch Engn, Dept Comp Sci & Intelligent Syst, Osaka, Japan
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multiobjective 0/1 knapsack problems have been frequently used as test problems for the performance evaluation of evolutionary multiobjective optimization algorithms. It has been shown that their performance on such test problems strongly depends on the choice of a repair method to transform infeasible solutions into feasible ones. We examine partial Lamarckianism where Lamarckian repair is probabilistically applied to infeasible solutions. When the Lamarckian repair is not applied to an infeasible solution, Baldwinian repair is used. We propose an island model to spatially implement the partial Lamarckianism where each island is based on either Lamarckian or Baldwinian.
引用
收藏
页码:265 / 270
页数:6
相关论文
共 50 条
  • [31] On Benchmarking Interactive Evolutionary Multiobjective Algorithms
    Shavarani, Seyed Mahdi
    Lopez-Ibanez, Manuel
    Knowles, Joshua
    [J]. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2024, 28 (04) : 1084 - 1098
  • [32] Multiobjective evolutionary algorithms on complex networks
    Kirley, Michael
    Stewart, Robert
    [J]. EVOLUTIONARY MULTI-CRITERION OPTIMIZATION, PROCEEDINGS, 2007, 4403 : 81 - +
  • [33] Benchmarking evolutionary multiobjective optimization algorithms
    Mersmann, Olaf
    Trautmann, Heike
    Naujoks, Boris
    Weihs, Claus
    [J]. 2010 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2010,
  • [34] On Utilizing Infeasibility in Multiobjective Evolutionary Algorithms
    Hanne, Thomas
    [J]. MULTIOBJECTIVE PROGRAMMING AND GOAL PROGRAMMING: THEORETICAL RESULTS AND PRACTICAL APPLICATIONS, 2009, 618 : 113 - 122
  • [35] Explicit building-block multiobjective evolutionary algorithms for NPC problems
    Zydallis, JB
    Lamont, GB
    [J]. CEC: 2003 CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-4, PROCEEDINGS, 2003, : 2685 - 2695
  • [36] A survey on handling computationally expensive multiobjective optimization problems with evolutionary algorithms
    Chugh, Tinkle
    Sindhya, Karthik
    Hakanen, Jussi
    Miettinen, Kaisa
    [J]. SOFT COMPUTING, 2019, 23 (09) : 3137 - 3166
  • [37] Quantum-inspired evolutionary algorithms on continuous space multiobjective problems
    Olvera, Cynthia
    Montiel, Oscar
    Rubio, Yoshio
    [J]. SOFT COMPUTING, 2023, 27 (18) : 13143 - 13164
  • [38] Evolutionary Algorithms with Segment-Based Search for Multiobjective Optimization Problems
    Li, Miqing
    Yang, Shengxiang
    Li, Ke
    Liu, Xiaohui
    [J]. IEEE TRANSACTIONS ON CYBERNETICS, 2014, 44 (08) : 1295 - 1313
  • [39] Enhancing the Performance of Multiobjective Evolutionary Algorithms for Sanitary Sewer Rehabilitation Problems
    Ogidan, Olufunso
    Itaquy, Bruno
    Giacomoni, Marcio
    [J]. WORLD ENVIRONMENTAL AND WATER RESOURCES CONGRESS 2016: WATERSHED MANAGEMENT, IRRIGATION AND DRAINAGE, AND WATER RESOURCES PLANNING AND MANAGEMENT, 2016, : 171 - 180
  • [40] Multiobjective shape optimization of selected coupled problems by means of evolutionary algorithms
    Dlugosz, A.
    Burczynski, T.
    [J]. BULLETIN OF THE POLISH ACADEMY OF SCIENCES-TECHNICAL SCIENCES, 2012, 60 (02) : 215 - 222