Variance function estimation in multivariate nonparametric regression with fixed design

被引:30
|
作者
Cai, T. Tony [2 ]
Levine, Michael [1 ]
Wang, Lie [2 ]
机构
[1] Purdue Univ, W Lafayette, IN 47907 USA
[2] Univ Penn, Wharton Sch, Dept Stat, Philadelphia, PA 19104 USA
关键词
Minimax estimation; Nonparametric regression; Variance estimation; SQUARE SUCCESSIVE DIFFERENCE; CHOICE; RATIO;
D O I
10.1016/j.jmva.2008.03.007
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Variance function estimation in multivariate nonparametric regression is considered and the minimax rate of convergence is established in the iid Gaussian case. Our work uses the approach that generalizes the one used in [A. Munk, Bissantz, T. Wagner, G. Freitag, On difference based variance estimation in nonparametric regression when the covariate is high dimensional, J. R. Stat. Soc. B 67 (Part 1) (2005) 19-41] for the constant variance case. As is the case when the number of dimensions d = 1, and very much contrary to standard thinking, it is often not desirable to base the estimator of the variance function on the residuals from an optimal estimator of the mean. Instead it is desirable to use estimators of the mean with minimal bias. Another important conclusion is that the first order difference based estimator that achieves minimax rate of convergence in the one-dimensional case does not do the same in the high dimensional case. Instead, the optimal order of differences depends on the number of dimensions. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:126 / 136
页数:11
相关论文
共 50 条
  • [1] Estimation of Conditional Distribution Function Under Nonparametric Regression with Fixed Design
    Abdushukurov A.A.
    Abdikalikov F.A.
    [J]. Journal of Mathematical Sciences, 2022, 267 (1) : 132 - 138
  • [2] Double smoothing estimation of the multivariate regression function in nonparametric regression
    Hwang, RC
    Ken, ML
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2002, 31 (03) : 419 - 434
  • [3] Effect of mean on variance function estimation in nonparametric regression
    Wang, Lie
    Brown, Lawrence D.
    Cai, T. Tony
    Levine, Michael
    [J]. ANNALS OF STATISTICS, 2008, 36 (02): : 646 - 664
  • [4] ADAPTIVE VARIANCE FUNCTION ESTIMATION IN HETEROSCEDASTIC NONPARAMETRIC REGRESSION
    Cai, T. Tony
    Wang, Lie
    [J]. ANNALS OF STATISTICS, 2008, 36 (05): : 2025 - 2054
  • [5] Error variance function estimation in nonparametric regression models
    Alharbi, Yousef F.
    Patili, Prakash N.
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2018, 47 (05) : 1479 - 1491
  • [6] OPTIMAL ESTIMATION OF VARIANCE IN NONPARAMETRIC REGRESSION WITH RANDOM DESIGN
    Shen, Yandi
    Gao, Chao
    Witten, Daniela
    Han, Fang
    [J]. ANNALS OF STATISTICS, 2020, 48 (06): : 3589 - 3618
  • [7] ADAPTIVE NONPARAMETRIC-ESTIMATION OF A MULTIVARIATE REGRESSION FUNCTION
    MACK, YP
    MULLER, HG
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 1987, 23 (02) : 169 - 182
  • [8] NONPARAMETRIC LEAST SQUARES ESTIMATION OF A MULTIVARIATE CONVEX REGRESSION FUNCTION
    Seijo, Emilio
    Sen, Bodhisattva
    [J]. ANNALS OF STATISTICS, 2011, 39 (03): : 1633 - 1657
  • [9] THE ESTIMATION OF RESIDUAL VARIANCE IN NONPARAMETRIC REGRESSION
    BUCKLEY, MJ
    EAGLESON, GK
    SILVERMAN, BW
    [J]. BIOMETRIKA, 1988, 75 (02) : 189 - 199
  • [10] Variance estimation in nonparametric multiple regression
    Kulasekera, KB
    Gallagher, C
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2002, 31 (08) : 1373 - 1383