Heteroscedasticity;
linear regression;
rank test;
LINEAR-MODEL;
D O I:
暂无
中图分类号:
TP18 [人工智能理论];
学科分类号:
081104 ;
0812 ;
0835 ;
1405 ;
摘要:
Data are often affected by unknown heteroscedasticity, which can stretch the conclusions. This is even more serious in regression models, when data cannot be visualized. We show that the rank tests for regression significance are resistant to some types of local heteroscedasticity in the symmetric situation, provided the basic density of errors is symmetric and the score-generating function of the rank test is skew-symmetric. The performance of tests is illustrated numerically.
机构:
North China Univ Technol, Coll Sci, Dept Stat, Beijing 100144, Peoples R ChinaNorth China Univ Technol, Coll Sci, Dept Stat, Beijing 100144, Peoples R China
Xu, Li-Wen
Mei, Bo
论文数: 0引用数: 0
h-index: 0
机构:
North China Univ Technol, Coll Sci, Dept Stat, Beijing 100144, Peoples R ChinaNorth China Univ Technol, Coll Sci, Dept Stat, Beijing 100144, Peoples R China
Mei, Bo
Chen, Ran-Ran
论文数: 0引用数: 0
h-index: 0
机构:
North China Univ Technol, Coll Sci, Dept Stat, Beijing 100144, Peoples R ChinaNorth China Univ Technol, Coll Sci, Dept Stat, Beijing 100144, Peoples R China
Chen, Ran-Ran
Guo, Hong-Xia
论文数: 0引用数: 0
h-index: 0
机构:
North China Univ Technol, Coll Sci, Dept Stat, Beijing 100144, Peoples R ChinaNorth China Univ Technol, Coll Sci, Dept Stat, Beijing 100144, Peoples R China
Guo, Hong-Xia
Wang, Jia-jie
论文数: 0引用数: 0
h-index: 0
机构:
North China Univ Technol, Coll Sci, Dept Stat, Beijing 100144, Peoples R ChinaNorth China Univ Technol, Coll Sci, Dept Stat, Beijing 100144, Peoples R China