THE IITM EARTH SYSTEM MODEL

被引:42
|
作者
Swapna, P. [1 ]
Roxy, M. K. [1 ]
Aparna, K. [1 ]
Kulkarni, K. [1 ,2 ]
Prajeesh, A. G. [1 ]
Ashok, K. [1 ]
Krishnan, R. [1 ]
Moorthi, S. [3 ]
Kumar, A. [3 ]
Goswami, B. N. [1 ]
机构
[1] Indian Inst Trop Meteorol, Ctr Climate Change Res, Pune 411008, Maharashtra, India
[2] Max Planck Inst Meteorol, D-20146 Hamburg, Germany
[3] NOAA, Natl Ctr Environm Predict, College Pk, MD USA
关键词
SUMMER MONSOON RAINFALL; INDIAN-OCEAN; SEA-ICE; PART I; NUMERICAL-MODEL; CLIMATE; ENSO; SIMULATION; CIRCULATION; PREDICTION;
D O I
10.1175/BAMS-D-13-00276.1
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
With the goal of building an Earth system model appropriate for detection, attribution, and projection of changes in the South Asian monsoon, a state-of-the-art seasonal prediction model, namely the Climate Forecast System version 2 (CFSv2) has been adapted to a climate model suitable for extended climate simulations at the Indian Institute of Tropical Meteorology (IITM), Pune, India. While the CFSv2 model has been skillful in predicting the Indian summer monsoon (ISM) on seasonal time scales, a century-long simulation with it shows biases in the ocean mixed layer, resulting in a 1.5 degrees C cold bias in the global mean surface air temperature, a cold bias in the sea surface temperature (SST), and a cooler-than-observed troposphere. These biases limit the utility of CFSv2 to study climate change issues. To address biases, and to develop an Indian Earth System Model (IITM ESMv1), the ocean component in CFSv2 was replaced at IITM with an improved version, having better physics and interactive ocean biogeochemistry. A 100-yr simulation with the new coupled model (with biogeochemistry switched off) shows substantial improvements, particularly in global mean surface temperature, tropical SST, and mixed layer depth. The model demonstrates fidelity in capturing the dominant modes of climate variability such as the ENSO and Pacific decadal oscillation. The ENSO-ISM teleconnections and the seasonal leads and lags are also well simulated. The model, a successful result of Indo-U.S. collaboration, will contribute to the IPCC's Sixth Assessment Report (AR6) simulations, a first for India.
引用
收藏
页码:1351 / 1367
页数:17
相关论文
共 50 条
  • [31] Earth System Reanalysis in Support of Climate Model Improvements
    Stammer, Detlef
    Amrhein, Daniel E.
    Balmaseda, Magdalena Alonso
    Bertino, Laurent
    Bonavita, Massimo
    Buontempo, Carlo
    Caltabiano, Nico
    Counillon, Francois
    Fenty, Ian
    Ferrari, Raffaele
    Fujii, Yosuke
    Gaikwad, Shreyas Sunil
    Gentine, Pierre
    Gettelman, Andrew
    Gopalakrishnan, Ganesh
    Heimbach, Patrick
    Hersbach, Hans
    Hill, Chris
    Kobayashi, Shinya
    Koehl, Armin
    Kushner, Paul J.
    Mazloff, Matthew
    Nakamura, Hisashi
    Penny, Stephen G.
    Slivinski, Laura
    Tegtmeier, Susann
    Zanna, Laure
    BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY, 2024, 105 (08) : E1399 - E1406
  • [32] Second law analysis of the earth system with a radiative model
    Wright, Sean
    International Journal of Applied Thermodynamics, 2002, 5 (02): : 57 - 65
  • [33] A feature model of coupling technologies for Earth System Models
    Dunlap, Rocky
    Rugaber, Spencer
    Mark, Leo
    COMPUTERS & GEOSCIENCES, 2013, 53 : 13 - 20
  • [34] Impacts of Vertical Migrants on Biogeochemistry in an Earth System Model
    Getzlaff, Julia
    Kriest, Iris
    GLOBAL BIOGEOCHEMICAL CYCLES, 2024, 38 (07)
  • [35] A synthetic fault system in a spherical and viscoelastic earth model
    Casarotti, E
    Piersanti, A
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2005, 160 (02) : 581 - 591
  • [36] Description and Evaluation of the MIT Earth System Model (MESM)
    Sokolov, Andrei
    Kicklighter, David
    Schlosser, Adam
    Wang, Chien
    Monier, Erwan
    Brown-Steiner, Benjamin
    Prinn, Ronald
    Forest, Chris
    Gao, Xiang
    Libardoni, Alex
    Eastham, Sebastian
    JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS, 2018, 10 (08) : 1759 - 1789
  • [37] Regional Climate Simulations With the Community Earth System Model
    Gettelman, A.
    Callaghan, P.
    Larson, V. E.
    Zarzycki, C. M.
    Bacmeister, J. T.
    Lauritzen, P. H.
    Bogenschutz, P. A.
    Neale, R. B.
    JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS, 2018, 10 (06): : 1245 - 1265
  • [38] Using Multiagent System to Build Structural Earth Model
    Zhu, Beiting
    Guessoum, Zahia
    Perrin, Michel
    Braunschweig, Bertrand
    Fery-Forgues, Pierre
    Rainaud, Jean-Francois
    AGENT COMPUTING AND MULTI-AGENT SYSTEMS, 2009, 5044 : 37 - +
  • [39] A Multitask Learning View on the Earth System Model Ensemble
    Goncalves, Andre R.
    Von Zuben, Fernando J.
    Banerjee, Arindam
    COMPUTING IN SCIENCE & ENGINEERING, 2015, 17 (06) : 35 - 42
  • [40] The Community Earth System Model A Framework for Collaborative Research
    Hurrell, James W.
    Holland, M. M.
    Gent, P. R.
    Ghan, S.
    Kay, Jennifer E.
    Kushner, P. J.
    Lamarque, J. -F.
    Large, W. G.
    Lawrence, D.
    Lindsay, K.
    Lipscomb, W. H.
    Long, M. C.
    Mahowald, N.
    Marsh, D. R.
    Neale, R. B.
    Rasch, P.
    Vavrus, S.
    Vertenstein, M.
    Bader, D.
    Collins, W. D.
    Hack, J. J.
    Kiehl, J.
    Marshall, S.
    BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY, 2013, 94 (09) : 1339 - 1360