3D Newton-Cartan supergravity

被引:64
|
作者
Andringa, Roel [1 ]
Bergshoeff, Eric A. [1 ]
Rosseel, Jan [2 ]
Sezgin, Ergin [3 ]
机构
[1] Univ Groningen, Ctr Theoret Phys, NL-9747 AG Groningen, Netherlands
[2] Vienna Univ Technol, Inst Theoret Phys, A-1040 Vienna, Austria
[3] Texas A&M Univ, George P & Cynthia Woods Mitchell Inst Fundamenta, College Stn, TX 77843 USA
基金
美国国家科学基金会; 奥地利科学基金会;
关键词
D O I
10.1088/0264-9381/30/20/205005
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We construct a supersymmetric extension of three-dimensional Newton-Cartan gravity by gauging a super-Bargmann algebra. In order to obtain a non-trivial supersymmetric extension of the Bargmann algebra one needs at least two supersymmetries leading to a N = 2 super-Bargmann algebra. Due to the fact that there is a universal Newtonian time, only one of the two supersymmetries can be gauged. The other supersymmetry is realized as a fermionic Stueckelberg symmetry and only survives as a global supersymmetry. We explicitly show how, in the frame of a Galilean observer, the system reduces to a supersymmetric extension of the Newton potential. The corresponding supersymmetry rules can only be defined, provided we also introduce a 'dual Newton potential'. We comment on the four-dimensional case.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] Unstable D-brane in torsional Newton-Cartan background
    J. Klusoň
    [J]. Journal of High Energy Physics, 2020
  • [22] The teleparallel equivalent of Newton-Cartan gravity
    Read, James
    Teh, Nicholas J.
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2018, 35 (18)
  • [23] A worldsheet supersymmetric Newton-Cartan string
    Chris D.A. Blair
    [J]. Journal of High Energy Physics, 2019
  • [24] BARGMANN STRUCTURES AND NEWTON-CARTAN THEORY
    DUVAL, C
    BURDET, G
    KUNZLE, HP
    PERRIN, M
    [J]. PHYSICAL REVIEW D, 1985, 31 (08): : 1841 - 1853
  • [25] Newton-Cartan submanifolds and fluid membranes
    Armas, Jay
    Hartong, Jelle
    Have, Emil
    Nielsen, Bjarke F.
    Obers, Niels A.
    [J]. PHYSICAL REVIEW E, 2020, 101 (06)
  • [26] A worldsheet supersymmetric Newton-Cartan string
    Blair, Chris D. A.
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2019, 2019 (10)
  • [27] A new look at Newton-Cartan gravity
    Bergshoeff, E. A.
    Rosseel, J.
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2016, 31 (24):
  • [28] Gravitational anomalies on the Newton-Cartan background
    Fernandes, Karan
    Mitra, Arpita
    [J]. PHYSICAL REVIEW D, 2017, 96 (08)
  • [29] A GENERALIZATION OF THE NEWTON-CARTAN THEORY OF GRAVITATION
    NITSURE, N
    [J]. INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 1980, 11 (06): : 805 - 818
  • [30] Disformal transformation in Newton-Cartan geometry
    Huang, Peng
    Yuan, Fang-Fang
    [J]. EUROPEAN PHYSICAL JOURNAL C, 2016, 76 (08):