Fault slip rates and interseismic deformation in the western Transverse Ranges, California

被引:39
|
作者
Marshall, Scott T. [1 ]
Funning, Gareth J. [2 ]
Owen, Susan E. [3 ]
机构
[1] Appalachian State Univ, Dept Geol, Boone, NC 28608 USA
[2] Univ Calif Riverside, Dept Earth Sci, Riverside, CA 92521 USA
[3] CALTECH, Jet Prop Lab, Pasadena, CA USA
关键词
interseismic deformation; Transverse Ranges; strain inversion; mechanical model; dislocation model; fault slip rate; SAN-ANDREAS-FAULT; LOS-ANGELES BASIN; TECTONIC BOUNDARY-CONDITIONS; 1994 NORTHRIDGE EARTHQUAKES; NEOGENE CRUSTAL ROTATIONS; RECENT SURFACE RUPTURE; BLIND-THRUST SYSTEM; OAK-RIDGE FAULT; SOUTHERN-CALIFORNIA; VENTURA BASIN;
D O I
10.1002/jgrb.50312
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
To better constrain fault slip rates and patterns of interseismic deformation in the western Transverse Ranges of southern California, we present results from analysis of GPS and interferometric synthetic aperture radar (InSAR) data and three-dimensional mechanical and kinematic models of active faulting. Anthropogenic motions are detected in several localized zones but do not significantly affect the vast majority of continuous GPS site locations. GPS measures contraction rates across the Ventura Basin of similar to 7 mm/yr oriented west-northwest with rates decreasing to the west and east. The Santa Barbara channel is accommodating similar to 6.5 mm/yr in the east and similar to 2.5 mm/yr in the western portions of N/S contraction. Inversion of horizontal GPS velocities highlights a zone of localized fast contraction rates following the Ventura Basin. Using a mechanical model driven by geodetically calculated strain rates, we show that there are no significant discrepancies between short-term slip rates captured by geodesy and longer-term slip rates measured by geology. Mechanical models reproduce the first-order interseismic velocity and strain rate patterns but fail to reproduce strongly localized contraction in the Ventura Basin due to the inadequate homogeneous elastic properties of the model. Existing two-dimensional models match horizontal rates but predict significant uplift gradients that are not observed in the GPS data. Mechanical models predict zones of fast contraction in the Santa Barbara channel and offshore near Malibu, suggesting that offshore faults represent a significant seismic hazard to the region. Furthermore, many active faults throughout the region may produce little to no interseismic deformation, making accurate seismic hazard assessment challenging.
引用
收藏
页码:4511 / 4534
页数:24
相关论文
共 50 条
  • [41] Sediment yield from the tectonically active semiarid Western Transverse Ranges of California
    Warrick, Jonathan A.
    Mertes, Leal A.K.
    GEOLOGICAL SOCIETY OF AMERICA BULLETIN, 2009, 121 (7-8) : 1054 - 1070
  • [42] A new GPS velocity field for the Pacific Plate - Part 2: implications for fault slip rates in western California
    DeMets, C.
    Marquez-Azua, Bertha
    Cabral-Cano, Enrique
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2014, 199 (03) : 1900 - 1909
  • [44] New kinematic constraints of the western Doruneh fault, northeastern Iran, from interseismic deformation analysis
    Pezzo, Giuseppe
    Tolomei, Cristiano
    Atzori, Simone
    Salvi, Stefano
    Shabanian, Esmaeil
    Bellier, Olivier
    Farbod, Yassaman
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2012, 190 (01) : 622 - 628
  • [45] Structure and Seismic Hazard of the Ventura Avenue Anticline and Ventura Fault, California: Prospect for Large, Multisegment Ruptures in the Western Transverse Ranges
    Hubbard, Judith
    Shaw, John H.
    Dolan, James
    Pratt, Thomas L.
    McAuliffe, Lee
    Rockwell, Thomas K.
    BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA, 2014, 104 (03) : 1070 - 1087
  • [46] INTERSEISMIC SLIP RATES AND SHALLOW CREEP ALONG THE NORTHWESTERN SEGMENT OF THE XIANSHUIHE FAULT FROM INSAR DATA
    Chen Y.
    Zhao B.
    Xiong W.
    Wang W.
    Yu P.-F.
    Yu J.-S.
    Wang D.-Z.
    Chen W.
    Qiao X.-J.
    Dizhen Dizhi, 2023, 45 (05): : 1074 - 1091
  • [47] GRAVITY OF WESTERN TRANSVERSE RANGES
    RIETMAN, J
    ALDRICH, J
    TRANSACTIONS-AMERICAN GEOPHYSICAL UNION, 1968, 49 (04): : 665 - &
  • [49] SEISMIC STRUCTURE OF TRANSVERSE RANGES, CALIFORNIA
    HADLEY, D
    KANAMORI, H
    GEOLOGICAL SOCIETY OF AMERICA BULLETIN, 1977, 88 (10) : 1469 - 1478
  • [50] Deformation kinematics in the western United States determined from Quaternary fault slip rates and recent geodetic data
    Shen-Tu, BM
    Holt, WE
    Haines, AJ
    JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 1999, 104 (B12) : 28927 - 28955