Multiple imputation when records used for imputation are not used or disseminated for analysis

被引:20
|
作者
Reiter, Jerome P. [1 ]
机构
[1] Duke Univ, Dept Stat Sci, Durham, NC 27708 USA
基金
美国国家科学基金会;
关键词
D O I
10.1093/biomet/asn042
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
When some of the records used to estimate the imputation models in multiple imputation are not used or available for analysis, the usual multiple imputation variance estimator has positive bias. We present an alternative approach that enables unbiased estimation of variances and, hence, calibrated inferences in such contexts. First, using all records, the imputer samples m values of the parameters of the imputation model. Second, for each parameter draw, the imputer simulates the missing values for all records n times. From these mn completed datasets, the imputer can analyse or disseminate the appropriate subset of records. We develop methods for interval estimation and significance testing for this approach. Methods are presented in the context of multiple imputation for measurement error.
引用
收藏
页码:933 / 946
页数:14
相关论文
共 50 条
  • [21] Multiple imputation in practice
    White, Ian R.
    Wood, Angela
    [J]. STATISTICAL METHODS IN MEDICAL RESEARCH, 2007, 16 (03) : 195 - 197
  • [22] Multiple imputation: a primer
    Schafer, JL
    [J]. STATISTICAL METHODS IN MEDICAL RESEARCH, 1999, 8 (01) : 3 - 15
  • [23] Local multiple imputation
    Aerts, M
    Claeskens, G
    Hens, N
    Molenberghs, G
    [J]. BIOMETRIKA, 2002, 89 (02) : 375 - 388
  • [24] Multiple imputation with PAN
    Schafer, JL
    [J]. NEW METHODS FOR THE ANALYSIS OF CHANGE, 2001, : 357 - 377
  • [25] The multiple adaptations of multiple imputation
    Reiter, Jerome P.
    Raghunathan, Trivellore E.
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2007, 102 (480) : 1462 - 1471
  • [26] Avoiding Pitfalls When Combining Multiple Imputation and Propensity Scores
    Granger, Emily
    Lunt, Mark
    Sergeant, Jamie C.
    [J]. PHARMACOEPIDEMIOLOGY AND DRUG SAFETY, 2016, 25 : 23 - 23
  • [27] Avoiding pitfalls when combining multiple imputation and propensity scores
    Granger, Emily
    Sergeant, Jamie C.
    Lunt, Mark
    [J]. STATISTICS IN MEDICINE, 2019, 38 (26) : 5120 - 5132
  • [28] Discussion on multiple imputation
    Rubin, DB
    [J]. INTERNATIONAL STATISTICAL REVIEW, 2003, 71 (03) : 619 - 625
  • [29] Incomplete clustering analysis via multiple imputation
    Lee, Jung Wun
    Harel, Ofer
    [J]. JOURNAL OF APPLIED STATISTICS, 2023, 50 (09) : 1962 - 1979
  • [30] Multiple imputation with multivariate imputation by chained equation (MICE) package
    Zhang, Zhongheng
    [J]. ANNALS OF TRANSLATIONAL MEDICINE, 2016, 4 (02)