Multiple imputation when records used for imputation are not used or disseminated for analysis

被引:20
|
作者
Reiter, Jerome P. [1 ]
机构
[1] Duke Univ, Dept Stat Sci, Durham, NC 27708 USA
基金
美国国家科学基金会;
关键词
D O I
10.1093/biomet/asn042
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
When some of the records used to estimate the imputation models in multiple imputation are not used or available for analysis, the usual multiple imputation variance estimator has positive bias. We present an alternative approach that enables unbiased estimation of variances and, hence, calibrated inferences in such contexts. First, using all records, the imputer samples m values of the parameters of the imputation model. Second, for each parameter draw, the imputer simulates the missing values for all records n times. From these mn completed datasets, the imputer can analyse or disseminate the appropriate subset of records. We develop methods for interval estimation and significance testing for this approach. Methods are presented in the context of multiple imputation for measurement error.
引用
收藏
页码:933 / 946
页数:14
相关论文
共 50 条
  • [1] Multiple imputation in multivariate problems when the imputation and analysis models differ
    Schafer, JL
    [J]. STATISTICA NEERLANDICA, 2003, 57 (01) : 19 - 35
  • [2] Should Regression Calibration or Multiple Imputation Be Used When Calibrating Different Devices in a Longitudinal Study?
    Loop, Matthew S.
    Lotspeich, Sarah C.
    Garcia, Tanya P.
    Meyer, Michelle L.
    [J]. CIRCULATION, 2023, 147
  • [3] Differences in the commonly used genotype imputation algorithms and their imputation accuracy estimates
    Parn, Kalle
    Pirinen, Matti
    Kals, Mart
    Magi, Reedik
    Salomaa, Veikko
    Boehnke, Michael
    Hall, Ira
    Stitziel, Nathan
    Freimer, Nelson
    Daly, Mark
    Palotie, Aarno
    Ripatti, Samuli
    Palta, Priit
    [J]. 2018 IEEE 14TH INTERNATIONAL CONFERENCE ON E-SCIENCE (E-SCIENCE 2018), 2018, : 293 - 294
  • [4] PRO SESSION: IMPUTATION IS A POWERFUL ANALYTICAL TOOL, WHEN APPROPRIATELY USED
    Carmona, Loreto
    [J]. ANNALS OF THE RHEUMATIC DISEASES, 2019, 78 : 48 - 48
  • [5] Variance estimation when donor imputation is used to fill in missing values
    Beaumont, Jean-Francois
    Bocci, Cynthia
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2009, 37 (03): : 400 - 416
  • [6] Propensity score analysis with partially observed covariates: How should multiple imputation be used?
    Leyrat, Clemence
    Seaman, Shaun R.
    White, Ian R.
    Douglas, Ian
    Smeeth, Liam
    Kim, Joseph
    Resche-Rigon, Matthieu
    Carpenter, James R.
    Williamson, Elizabeth J.
    [J]. STATISTICAL METHODS IN MEDICAL RESEARCH, 2019, 28 (01) : 3 - 19
  • [7] The proportion of missing data should not be used to guide decisions on multiple imputation
    Madley-Dowd, Paul
    Hughes, Rachael
    Tilling, Kate
    Heron, Jon
    [J]. JOURNAL OF CLINICAL EPIDEMIOLOGY, 2019, 110 : 63 - 73
  • [8] Comparative Variance and Multiple Imputation Used for Missing Values in Land Price DataSet
    Zhang, Longqing
    Bai, Liping
    Zhang, Xinwei
    Zhang, Yanghong
    Sun, Feng
    Chen, Changcheng
    [J]. CMC-COMPUTERS MATERIALS & CONTINUA, 2019, 61 (03): : 1175 - 1187
  • [9] When and how should multiple imputation be used for handling missing data in randomised clinical trials - a practical guide with flowcharts
    Jakobsen, Janus Christian
    Gluud, Christian
    Wetterslev, Jorn
    Winkel, Per
    [J]. BMC MEDICAL RESEARCH METHODOLOGY, 2017, 17
  • [10] When and how should multiple imputation be used for handling missing data in randomised clinical trials – a practical guide with flowcharts
    Janus Christian Jakobsen
    Christian Gluud
    Jørn Wetterslev
    Per Winkel
    [J]. BMC Medical Research Methodology, 17