Non-homologous end-joining proteins are required for Agrobacterium T-DNA integration

被引:102
|
作者
van Attikum, H [1 ]
Bundock, P [1 ]
Hooykaas, PJJ [1 ]
机构
[1] Leiden Univ, Clusius Lab, Inst Mol Plant Sci, NL-2333 AL Leiden, Netherlands
来源
EMBO JOURNAL | 2001年 / 20卷 / 22期
关键词
Agrobacterium; genomic instability; non-homologous end-joining; T-DNA integration; telomeres;
D O I
10.1093/emboj/20.22.6550
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Agrobacterium tumefaciens causes crown gall disease in dicotyledonous plants by introducing a segment of DNA (T-DNA), derived from its tumour-inducing (Ti) plasmid, into plant cells at infection sites. Besides these natural hosts, Agrobacterium can deliver the T-DNA also to monocotyledonous plants, yeasts and fungi. The T-DNA integrates randomly into one of the chromosomes of the eukaryotic host by an unknown process. Here, we have used the yeast Saccharomyces cerevisiae as a T-DNA recipient to demonstrate that the non-homologous end-joining (NHEJ) proteins Yku70, Rad50, Mre11, Xrs2, Lig4 and Sir4 are required for the integration of T-DNA into the host genome. We discovered a minor pathway for T-DNA integration at the telomeric regions, which is still operational in the absence of Rad50, Mre11 or Xrs2, but not in the absence of Yku70. T-DNA integration at the telomeric regions in the rad50, mre11 and xrs2 mutants was accompanied by gross chromosomal rearrangements.
引用
收藏
页码:6550 / 6558
页数:9
相关论文
共 50 条
  • [1] Agrobacterium T-DNA integration into the plant genome can occur without the activity of key non-homologous end-joining proteins
    Park, So-Yon
    Vaghchhipawala, Zarir
    Vasudevan, Balaji
    Lee, Lan-Ying
    Shen, Yunjia
    Singer, Kamy
    Waterworth, Wanda M.
    Zhang, Zhanyuan J.
    West, Christopher E.
    Mysore, Kirankumar S.
    Gelvin, Stanton B.
    PLANT JOURNAL, 2015, 81 (06): : 934 - 946
  • [2] Survey of plant non-homologous end joining (NHEJ) pathway components for role in Agrobacterium T-DNA integration
    Vaghchhipawala, Z. E.
    Mysore, K.
    PHYTOPATHOLOGY, 2008, 98 (06) : S161 - S161
  • [3] The Kudos of non-homologous end-joining
    Arthur J Lustig
    Nature Genetics, 1999, 23 : 130 - 131
  • [4] The Kudos of non-homologous end-joining
    Lustig, AJ
    NATURE GENETICS, 1999, 23 (02) : 130 - 131
  • [5] Mechanism and regulation of human non-homologous DNA end-joining
    Michael R. Lieber
    Yunmei Ma
    Ulrich Pannicke
    Klaus Schwarz
    Nature Reviews Molecular Cell Biology, 2003, 4 : 712 - 720
  • [6] The clinical impact of deficiency in DNA non-homologous end-joining
    Woodbine, Lisa
    Gennery, Andrew R.
    Jeggo, Penny A.
    DNA REPAIR, 2014, 16 : 84 - 96
  • [7] DNA non-homologous end-joining enters the resection arena
    Jeggo, Penny A.
    Loebrich, Markus
    ONCOTARGET, 2017, 8 (55) : 93317 - 93318
  • [8] Mechanism and regulation of human non-homologous DNA end-joining
    Lieber, MR
    Ma, YM
    Pannicke, U
    Schwarz, K
    NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2003, 4 (09) : 712 - 720
  • [9] Retinoblastoma family proteins: New players in DNA repair by non-homologous end-joining
    Huang, Paul H.
    Cook, Rebecca
    Zoumpoulidou, Georgia
    Luczynski, Maciej T.
    Mittnacht, Sibylle
    MOLECULAR & CELLULAR ONCOLOGY, 2016, 3 (02)
  • [10] Direct Involvement of Retinoblastoma Family Proteins in DNA Repair by Non-homologous End-Joining
    Cook, Rebecca
    Zoumpoulidou, Georgia
    Luczynski, Maciej T.
    Rieger, Simone
    Moquet, Jayne
    Spanswick, Victoria J.
    Hartley, John A.
    Rothkamm, Kai
    Huang, Paul H.
    Mittnacht, Sibylle
    CELL REPORTS, 2015, 10 (12): : 2006 - 2018