From the computer to the laboratory: materials discovery and design using first-principles calculations

被引:145
|
作者
Hautier, Geoffroy [1 ]
Jain, Anubhav [2 ]
Ong, Shyue Ping [3 ]
机构
[1] Catholic Univ Louvain, Inst Condensed Matter & Nanosci IMCN Nanocop Phys, B-1348 Louvain, Belgium
[2] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA 94720 USA
[3] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA
关键词
DENSITY-FUNCTIONAL THEORY; COMPUTATIONAL MATERIALS DESIGN; CRYSTAL-STRUCTURE PREDICTION; ELECTRONIC-STRUCTURE THEORY; HYDROGEN STORAGE; AB-INITIO; 1ST PRINCIPLES; THERMOELECTRIC-MATERIALS; GLOBAL OPTIMIZATION; CATHODE MATERIALS;
D O I
10.1007/s10853-012-6424-0
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The development of new technological materials has historically been a difficult and time-consuming task. The traditional role of computation in materials design has been to better understand existing materials. However, an emerging paradigm for accelerated materials discovery is to design new compounds in silico using first-principles calculations, and then perform experiments on the computationally designed candidates. In this paper, we provide a review of ab initio computational materials design, focusing on instances in which a computational approach has been successfully applied to propose new materials of technological interest in the laboratory. Our examples include applications in renewable energy, electronic, magnetic and multiferroic materials, and catalysis, demonstrating that computationally guided materials design is a broadly applicable technique. We then discuss some of the common features and limitations of successful theoretical predictions across fields, examining the different ways in which first-principles calculations can guide the final experimental result. Finally, we present a future outlook in which we expect that new models of computational search, such as high-throughput studies, will play a greater role in guiding materials advancements.
引用
收藏
页码:7317 / 7340
页数:24
相关论文
共 50 条
  • [31] Transport coefficients from first-principles calculations
    Scheidemantel, TJ
    Ambrosch-Draxl, C
    Thonhauser, T
    Badding, JV
    Sofo, JO
    PHYSICAL REVIEW B, 2003, 68 (12)
  • [32] First-principles discovery of novel quantum physics and materials: From theory to experiment
    Li, Yang
    Xu, Yong
    COMPUTATIONAL MATERIALS SCIENCE, 2021, 190
  • [33] Ammonia synthesis from first-principles calculations
    Honkala, K
    Hellman, A
    Remediakis, IN
    Logadottir, A
    Carlsson, A
    Dahl, S
    Christensen, CH
    Norskov, JK
    SCIENCE, 2005, 307 (5709) : 555 - 558
  • [34] Calculations of Hubbard U from first-principles
    Aryasetiawan, F.
    Karlsson, K.
    Jepsen, O.
    Schoenberger, U.
    PHYSICAL REVIEW B, 2006, 74 (12):
  • [35] Magnetism of chromia from first-principles calculations
    Shi, Siqi
    Wysocki, A. L.
    Belashchenko, K. D.
    PHYSICAL REVIEW B, 2009, 79 (10):
  • [36] Designing interfaces in energy materials applications with first-principles calculations
    Keith T. Butler
    Gopalakrishnan Sai Gautam
    Pieremanuele Canepa
    npj Computational Materials, 5
  • [37] First-principles calculations of two-dimensional magnetic materials
    Xu, Zhiming
    Li, Yang
    Xu, Yong
    Duan, Wenhui
    CHINESE SCIENCE BULLETIN-CHINESE, 2021, 66 (06): : 535 - 550
  • [38] First-principles calculations of nonlinear optical susceptibility of inorganic materials
    Rérat, M
    Cheng, WD
    Pandey, R
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2001, 13 (02) : 343 - 351
  • [39] An overview of first-principles calculations of NMR parameters for paramagnetic materials
    Lynch, C. I.
    MATERIALS SCIENCE AND TECHNOLOGY, 2016, 32 (02) : 181 - 194
  • [40] Designing interfaces in energy materials applications with first-principles calculations
    Butler, Keith T.
    Gautam, Gopalakrishnan Sai
    Canepa, Pieremanuele
    NPJ COMPUTATIONAL MATERIALS, 2019, 5 (1)