Quantitative iTRAQ-based proteomic analysis of phosphoproteins and ABA-regulated phosphoproteins in maize leaves under osmotic stress

被引:41
|
作者
Hu, Xiuli [1 ]
Li, Nana [1 ]
Wu, Liuji [1 ]
Li, Chunqi [1 ]
Li, Chaohai [1 ]
Zhang, Li [1 ]
Liu, Tianxue [1 ]
Wang, Wei [1 ]
机构
[1] Henan Agr Univ, State Key Lab Wheat & Maize Crop Sci, Collaborat Innovat Ctr Henan Grain Crops, Zhengzhou, Peoples R China
来源
SCIENTIFIC REPORTS | 2015年 / 5卷
基金
中国国家自然科学基金;
关键词
ABSCISIC-ACID; DROUGHT STRESS; PHOSPHORYLATION; CHLOROPHYLL; CAROTENOIDS; SENSITIVITY; MECHANISMS; ENRICHMENT; UNIVERSAL; TOLERANCE;
D O I
10.1038/srep15626
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Abscisic acid (ABA) regulates various developmental processes and stress responses in plants. Protein phosphorylation/dephosphorylation is a central post-translational modification (PTM) in ABA signaling. However, the phosphoproteins regulated by ABA under osmotic stress remain unknown in maize. In this study, maize mutant vp5 (deficient in ABA biosynthesis) and wild-type Vp5 were used to identify leaf phosphoproteins regulated by ABA under osmotic stress. Up to 4052 phosphopeptides, corresponding to 3017 phosphoproteins, were identified by Multiplex run iTRAQ-based quantitative proteomic and LC-MS/MS methods. The 4052 phosphopeptides contained 5723 non-redundant phosphosites; 512 phosphopeptides (379 in Vp5, 133 in vp5) displayed at least a 1.5-fold change of phosphorylation level under osmotic stress, of which 40 shared common in both genotypes and were differentially regulated by ABA. Comparing the signaling pathways involved in vp5 response to osmotic stress and those that in Vp5, indicated that ABA played a vital role in regulating these pathways related to mRNA synthesis, protein synthesis and photosynthesis. Our results provide a comprehensive dataset of phosphopeptides and phosphorylation sites regulated by ABA in maize adaptation to osmotic stress. This will be helpful to elucidate the ABA-mediate mechanism of maize endurance to drought by triggering phosphorylation or dephosphorylation cascades.
引用
收藏
页数:26
相关论文
共 50 条
  • [41] iTRAQ-based quantitative proteomic analysis of Pelteobagrus vachelli liver in response to hypoxia
    Wang, Min
    Liao, Shujia
    Fu, Zhineng
    Zang, Xuechun
    Yin, Shaowu
    Wang, Tao
    JOURNAL OF PROTEOMICS, 2022, 251
  • [42] iTRAQ-Based Quantitative Proteomic Analysis of the Potentiated and Dormant Antler Stem Cells
    Dong, Zhen
    Ba, Hengxing
    Zhang, Wei
    Coates, Dawn
    Li, Chunyi
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2016, 17 (11)
  • [43] iTRAQ-based quantitative proteomic analysis provides insight for molecular mechanism of neuroticism
    Lei Tian
    Hong-Zhao You
    Hao Wu
    Yu Wei
    Min Zheng
    Lei He
    Jin-Ying Liu
    Shu-Zhen Guo
    Yan Zhao
    Ren-Lai Zhou
    Xingang Hu
    Clinical Proteomics, 2019, 16
  • [44] iTRAQ-based quantitative subcellular proteomic analysis of Avibirnavirus-infected cells
    Sun, Yanting
    Hu, Boli
    Fan, Chengfei
    Jia, Lu
    Zhang, Yina
    Du, Aifang
    Zheng, Xiaojuan
    Zhou, Jiyong
    ELECTROPHORESIS, 2015, 36 (14) : 1596 - 1611
  • [45] iTRAQ-based quantitative proteomic analysis reveals alterations in the metabolism of Actinidia arguta
    Miaomiao Lin
    Jinbao Fang
    Xiujuan Qi
    Yukuo Li
    Jinyong Chen
    Leiming Sun
    Yunpeng Zhong
    Scientific Reports, 7
  • [46] iTRAQ-based quantitative proteomic analysis provides insight for molecular mechanism of neuroticism
    Tian, Lei
    You, Hong-Zhao
    Wu, Hao
    Wei, Yu
    Zheng, Min
    He, Lei
    Liu, Jin-Ying
    Guo, Shu-Zhen
    Zhao, Yan
    Zhou, Ren-Lai
    Hu, Xingang
    CLINICAL PROTEOMICS, 2019, 16 (01)
  • [47] iTRAQ-Based Quantitative Proteomic Analysis Reveals Proteomic Changes in Mycelium of Pleurotus ostreatus in Response to Heat Stress and Subsequent Recovery
    Zou, Yajie
    Zhang, Meijing
    Qu, Jibin
    Zhang, Jinxia
    FRONTIERS IN MICROBIOLOGY, 2018, 9
  • [48] Quantitative iTRAQ-based proteomic analysis of differentially expressed proteins in aging in human and monkey
    Wang, Hao
    Zhu, Xiaoqi
    Shen, Junyan
    Zhao, En-Feng
    He, Dajun
    Shen, Haitao
    Liu, Hailiang
    Zhou, Yongxin
    BMC GENOMICS, 2019, 20 (01)
  • [49] iTRAQ-based quantitative proteomic analysis of Yamanaka factors reprogrammed breast cancer cells
    Wang, Kun
    Shan, Zhiyan
    Duan, Lian
    Gong, Tiantian
    Liu, Feng
    Zhang, Yue
    Wang, Zhendong
    Shen, Jingling
    Lei, Lei
    ONCOTARGET, 2017, 8 (21) : 34330 - 34339
  • [50] iTRAQ-based quantitative proteomic analysis of the hepatopancreas in Scylla paramamosain during the molting cycle
    Liu, Lei
    Fu, Yuanyuan
    Xiao, Lichan
    Liu, Xiao
    Fang, Wei
    Wang, Chunlin
    COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS, 2021, 40