Flexible simulated moment estimation of nonlinear errors-in-variables models

被引:43
|
作者
Newey, WK [1 ]
机构
[1] MIT, Cambridge, MA 02139 USA
关键词
D O I
10.1162/003465301753237704
中图分类号
F [经济];
学科分类号
02 ;
摘要
Nonlinear regression with measurement error is important for estimation from microeconomic data. One approach to identification and estimation is a causal model, in which the unobserved true variable is predicted by observable variables. This paper details the estimation of such a model using simulated moments and a flexible disturbance distribution. An estimator of the asymptotic variance is given for parametric models. Also, a semiparametric consistency result is given. The value of the estimator is demonstrated in a Monte Carlo study and an application to estimating Engel Curves.
引用
收藏
页码:616 / 627
页数:12
相关论文
共 50 条