Instrumental variable estimation of nonlinear errors-in-variables models

被引:61
|
作者
Schennach, Susanne M. [1 ]
机构
[1] Univ Chicago, Dept Econ, Chicago, IL 60637 USA
关键词
errors-in-variables model; Fourier transform; generalized function; semiparametric model;
D O I
10.1111/j.1468-0262.2007.00736.x
中图分类号
F [经济];
学科分类号
02 ;
摘要
This paper establishes that instruments enable the identification of nonparametric regression models in the presence of measurement error by providing a closed form solution for the regression function in terms of Fourier transforms of conditional expectations of observable variables. For parametrically specified regression functions, we propose a root n consistent and asymptotically normal estimator that takes the familiar form of a generalized method of moments estimator with a plugged-in nonparametric kernel density estimate. Both the identification and the estimation methodologies rely on Fourier analysis and on the theory of generalized functions. The finite-sample properties of the estimator are investigated through Monte Carlo simulations.
引用
收藏
页码:201 / 239
页数:39
相关论文
共 50 条