3D nanoprinting of semiconductor quantum dots by photoexcitation-induced chemical bonding

被引:131
|
作者
Liu, Shao-Feng [1 ]
Hou, Zheng-Wei [2 ]
Lin, Linhan [1 ]
Li, Fu [3 ]
Zhao, Yao [1 ]
Li, Xiao-Ze [1 ]
Zhang, Hao [3 ]
Fang, Hong-Hua [1 ]
Li, Zhengcao [2 ]
Sun, Hong-Bo [1 ,4 ]
机构
[1] Tsinghua Univ, Dept Precis Instrument, State Key Lab Precis Measurement Technol & Instru, Beijing 100084, Peoples R China
[2] Tsinghua Univ, Sch Mat Sci & Engn, Key Lab Adv Mat MOE, Beijing 100084, Peoples R China
[3] Tsinghua Univ, Dept Chem, Beijing 100084, Peoples R China
[4] Jilin Univ, Coll Elect Sci & Engn, State Key Lab Integrated Optoelect, Changchun 130012, Peoples R China
基金
中国国家自然科学基金;
关键词
RESOLUTION; EFFICIENT;
D O I
10.1126/science.abo5345
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Three-dimensional (3D) laser nanoprinting allows maskless manufacturing of diverse nanostructures with nanoscale resolution. However, 3D manufacturing of inorganic nanostructures typically requires nanomaterial-polymer composites and is limited by a photopolymerization mechanism, resulting in a reduction of material purity and degradation of intrinsic properties. We developed a polymerization-independent, laser direct writing technique called photoexcitation-induced chemical bonding. Without any additives, the holes excited inside semiconductor quantum dots are transferred to the nanocrystal surface and improve their chemical reactivity, leading to interparticle chemical bonding. As a proof of concept, we printed arbitrary 3D quantum dot architectures at a resolution beyond the diffraction limit. Our strategy will enable the manufacturing of free-form quantum dot optoelectronic devices such as light-emitting devices or photodetectors.
引用
收藏
页码:1112 / 1116
页数:5
相关论文
共 50 条
  • [21] Electron energy state spin-splitting in 3D cylindrical semiconductor quantum dots
    Y. Li
    C.P. Voskoboynikov
    S.M. Lee
    O. Sze
    The European Physical Journal B - Condensed Matter and Complex Systems, 2002, 28 : 475 - 481
  • [22] Electron energy state spin-splitting in 3D cylindrical semiconductor quantum dots
    Li, Y
    Voskoboynikov
    Lee, CP
    Sze, SM
    Tretyak, O
    EUROPEAN PHYSICAL JOURNAL B, 2002, 28 (04): : 475 - 481
  • [23] Semiconductor Quantum Dots in Chemical Sensors and Biosensors
    Frasco, Manuela F.
    Chaniotakis, Nikos
    SENSORS, 2009, 9 (09): : 7266 - 7286
  • [24] Quantum dots in semiconductor chemical sensors and biosensors
    Roya, Zakavati
    Mansour, Bayat
    Afshin, Mohsenifar
    Gamal, Hashemi Hezaveh
    CLINICAL BIOCHEMISTRY, 2011, 44 (13) : S223 - S223
  • [25] Luminescence Semiconductor Quantum Dots in Chemical Analysis
    A. M. Abramova
    O. A. Goryacheva
    D. D. Drozd
    A. S. Novikova
    T. S. Ponomareva
    P. D. Strokin
    I. Yu. Goryacheva
    Journal of Analytical Chemistry, 2021, 76 : 273 - 283
  • [26] Luminescence Semiconductor Quantum Dots in Chemical Analysis
    Abramova, A. M.
    Goryacheva, O. A.
    Drozd, D. D.
    Novikova, A. S.
    Ponomareva, T. S.
    Strokin, P. D.
    Goryacheva, I. Yu.
    JOURNAL OF ANALYTICAL CHEMISTRY, 2021, 76 (03) : 273 - 283
  • [27] Femtosecond laser 3D nanoprinting for functional devices
    Sun, Hong-Bo
    Han, Bing
    SPIE MICRO + NANO MATERIALS, DEVICES, AND APPLICATIONS 2019, 2019, 11201
  • [28] Advances in APM-mediated 3D nanoprinting
    Liu, Gang-Yu
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 253
  • [29] Nanoscale 3D Printing of Quantum Dots on Paper
    Bae, Jongcheon
    Kim, Seonghyeon
    Ahn, Jinhyuck
    Sim, Ho Hyung
    Wajahat, Muhammad
    Kim, Jung Hyun
    Yoon, Seog-Young
    Kim, Ji Tae
    Seol, Seung Kwon
    Pyo, Jaeyeon
    ADVANCED ENGINEERING MATERIALS, 2021, 23 (09)
  • [30] 3D arrays of quantum dots for laser applications
    Ledentsov, NN
    Bohrer, J
    Bimberg, D
    Zaitsev, SV
    Ustinov, VM
    Egorov, AY
    Zhukov, AE
    Maximov, MV
    Koptev, PS
    Alferov, ZI
    Kosogov, AO
    Gosele, U
    Ruvimov, SS
    COMPOUND SEMICONDUCTOR ELECTRONICS AND PHOTONICS, 1996, 421 : 133 - 138