Optimizing adiabatic quantum pathways via a learning algorithm

被引:10
|
作者
Yang, Xiaodongvi [1 ,2 ,3 ]
Liu, Ran [1 ,2 ,3 ]
Li, Jun [4 ,5 ]
Peng, Xinhua [1 ,2 ,3 ,6 ]
机构
[1] Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Peoples R China
[2] Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Peoples R China
[3] Univ Sci & Technol China, CAS Key Lab Microscale Magnet Resonance, Hefei 230026, Peoples R China
[4] Southern Univ Sci & Technol, Shenzhen Inst Quantum Sci & Engn, Shenzhen 518055, Peoples R China
[5] Southern Univ Sci & Technol, Guangdong Prov Key Lab Quantum Sci & Engn, Shenzhen 518055, Peoples R China
[6] Univ Sci & Technol China, Synerget Innovat Ctr Quantum Informat & Quantum P, Hefei 230026, Peoples R China
基金
中国国家自然科学基金;
关键词
DIFFERENTIAL EVOLUTION; OPTIMIZATION;
D O I
10.1103/PhysRevA.102.012614
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Designing proper time-dependent control fields for slowly varying the system to the ground state that encodes the problem solution is crucial for adiabatic quantum computation. However, inevitable perturbations in real applications demand us to accelerate the evolution so that the adiabatic errors can be prevented from accumulation. Here, by treating this trade-off task as a multiobjective optimization problem, we propose a gradient-free learning algorithm with pulse smoothing technique to search optimal adiabatic quantum pathways and apply it to the Landau-Zener Hamiltonian and Grover search Hamiltonian. Numerical comparisons with a linear schedule, local adiabatic theorem induced schedule, and gradient-based algorithm searched schedule reveal that the proposed method can achieve significant performance improvements in terms of the adiabatic time and the instantaneous ground-state population maintenance. The proposed method can be used to solve more complex and real adiabatic quantum computation problems.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Optimizing the quantum adiabatic algorithm
    Hu, Hongye
    Wu, Biao
    [J]. PHYSICAL REVIEW A, 2016, 93 (01)
  • [2] Quantum adiabatic algorithm design using reinforcement learning
    Lin, Jian
    Lai, Zhong Yuan
    Li, Xiaopeng
    [J]. PHYSICAL REVIEW A, 2020, 101 (05)
  • [3] Machine learning assisted quantum adiabatic algorithm design
    Lin Jian
    Ye Meng
    Zhu Jia-Wei
    Li Xiao-Peng
    [J]. ACTA PHYSICA SINICA, 2021, 70 (14)
  • [4] Adiabatic quantum learning
    Ma, Nannan
    Chu, Wenhao
    Zhao, P. Z.
    Gong, Jiangbin
    [J]. PHYSICAL REVIEW A, 2023, 108 (04)
  • [5] Adiabatic Spectroscopy and a Variational Quantum Adiabatic Algorithm
    Schiffer, Benjamin F.
    Tura, Jordi
    Cirac, J. Ignacio
    [J]. PRX QUANTUM, 2022, 3 (02):
  • [6] Optimizing Quantum Circuit Placement via Machine Learning
    Fan, Hongxiang
    Guo, Ce
    Luk, Wayne
    [J]. PROCEEDINGS OF THE 59TH ACM/IEEE DESIGN AUTOMATION CONFERENCE, DAC 2022, 2022, : 19 - 24
  • [7] The complexity of the Quantum Adiabatic Algorithm
    Young, A. P.
    Knysh, S.
    Smelyanskiy, V. N.
    [J]. COMPUTER PHYSICS COMMUNICATIONS, 2011, 182 (01) : 27 - 28
  • [8] Quantum adiabatic machine learning
    Pudenz, Kristen L.
    Lidar, Daniel A.
    [J]. QUANTUM INFORMATION PROCESSING, 2013, 12 (05) : 2027 - 2070
  • [9] Quantum adiabatic machine learning
    Kristen L. Pudenz
    Daniel A. Lidar
    [J]. Quantum Information Processing, 2013, 12 : 2027 - 2070
  • [10] Enhanced adiabatic quantum algorithm in finite-temperature reservoirs via squeezing
    Xu, Xi-Chen
    Xie, Yang-Yang
    Ablimit, Arapat
    Wang, Zhao-Ming
    [J]. QUANTUM INFORMATION PROCESSING, 2024, 23 (08)