Central extensions of Lax operator algebras

被引:9
|
作者
Schlichenmaier, M. [1 ]
Sheinman, O. K. [2 ]
机构
[1] Univ Luxembourg, Luxembourg, Luxembourg
[2] Russian Acad Sci, VA Steklov Math Inst, Moscow 117901, Russia
关键词
D O I
10.1070/RM2008v063n04ABEH004550
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Lax operator algebras were introduced by Krichever and Shein-man as a further development of Krichever's theory of Lax operators oil algebraic curves. These are almost-graded Lie algebras of current type. In this paper local cocycles and associated almost-graded central extensions of Lax operator algebras are classified. It is shown that in the case when the corresponding finite-dimensional Lie algebra, is simple the two-cohomology space is one-dimensional. An important role is Played by the action of the Lie algebra of meromorphic vector fields on the Lax operator algebra via suitable covariant derivatives.
引用
收藏
页码:727 / 766
页数:40
相关论文
共 50 条
  • [21] Mirror Extensions of Vertex Operator Algebras
    Chongying Dong
    Xiangyu Jiao
    Feng Xu
    Communications in Mathematical Physics, 2014, 329 : 263 - 294
  • [22] REMARKS ON HNN EXTENSIONS IN OPERATOR ALGEBRAS
    Ueda, Yoshimichi
    ILLINOIS JOURNAL OF MATHEMATICS, 2008, 52 (03) : 705 - 725
  • [23] Lax operator algebras of type G2
    O. K. Sheinman
    Doklady Mathematics, 2014, 89 : 151 - 153
  • [24] Lax operator algebras of type G2
    Sheinman, O. K.
    DOKLADY MATHEMATICS, 2014, 89 (02) : 151 - 153
  • [25] Central extensions of axial algebras
    Kaygorodov, Ivan
    Gonzalez, Candido Martin
    Paez-Guillan, Pilar
    JOURNAL OF ALGEBRA, 2025, 662 : 797 - 831
  • [26] On -central extensions of Leibniz algebras
    Casas, J. M.
    Khmaladze, E.
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2017, 111 (01) : 39 - 56
  • [27] On central extensions of preprojective algebras
    Etingof, Pavel
    Latour, Frederic
    Rains, Eric
    JOURNAL OF ALGEBRA, 2007, 313 (01) : 165 - 175
  • [28] A LAX REPRESENTATION FOR THE VERTEX OPERATOR AND THE CENTRAL EXTENSION
    ADLER, M
    SHIOTA, T
    VANMOERBEKE, P
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1995, 171 (03) : 547 - 588
  • [29] Simple currents and extensions of vertex operator algebras
    Dong, CY
    Li, HS
    Mason, G
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1996, 180 (03) : 671 - 707
  • [30] and as Vertex Operator Extensions¶of Dual Affine Algebras
    P. Bowcock
    B. L. Feigin
    A. M. Semikhatov
    A. Taormina
    Communications in Mathematical Physics, 2000, 214 : 495 - 545