Peptides and proteins were separated by capillary electrophoresis (CE) in fused-silica capillaries coated with an irreversibly adsorbed monolayer of derivatized polystyrene nanoparticles. Whereas phosphate buffer, pH 3.10, enabled the highly efficient separation of basic proteins with plate counts up to 1 400 000 m(-1), volatile buffer components such as formic acid or acetic acid titrated with ammonia to the desired pH had to be used for the direct coupling of CE with electrospray ionization mass spectrometry (ESI-MS). Compared to 40 mM phosphoric acid-sodium hydroxide, pH 3.10, a background electrolyte containing 125 mM formic acid-ammonia, pH 4.00, was shown to yield equivalent separation efficiency. Investigation of the influence of buffered electrolytes on the ESI-MS signal of lysozyme at pH 2.70-4.00 showed that the charge state distribution shifted to lower charge states at higher pH with a concomitant five-fold decrease in signal intensity of the most abundant signal. The presence of trifluoroacetic acid in the background electrolyte greatly increased the level of baseline noise and completely inhibited the observation of any mass signals related to proteins. Full scan spectra could be acquired from 50-500 fmol amounts of proteins during coupled CE-ESI-NIS utilizing 100-125 mM formic acid-ammonia, pH 3.10. However, compared to UV detection, considerable band broadening is observed with ESI-MS detection which is mainly attributed to column overloading, band spreading in the interface, and scanning data acquisition. Finally, the major whey proteins beta-lactoglobulin A, beta-lactoglobulin B, and alpha-lactalbumin were identified in a whey drink by comparison of molecular masses determined by CE-ESI-MS to molecular masses calculated from the amino acid sequence. (C) 1999 Elsevier Science B.V. All rights reserved.