A reversible jump Markov chain Monte Carlo algorithm for 1D inversion of magnetotelluric data

被引:30
|
作者
Mandolesi, Eric [1 ,2 ]
Ogaya, Xenia [2 ]
Campanya, Joan [2 ,4 ]
Agostinetti, Nicola Piana [2 ,3 ]
机构
[1] Univ Victoria, Victoria, BC, Canada
[2] Dublin Inst Adv Studies, Geophys Sect, Dublin, Ireland
[3] Univ Vienna, Dept Sedimentol & Geodynam, Vienna, Austria
[4] Trinity Coll Dublin, Sch Phys, Dublin, Ireland
基金
奥地利科学基金会; 爱尔兰科学基金会;
关键词
trans-d inversion; Magnetotellurics; rjMCMC; Clare basin; BAYESIAN INVERSION; ROBUST ESTIMATION; SAMPLING METHODS; CLIMATE; MODELS;
D O I
10.1016/j.cageo.2018.01.011
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper presents a new computer code developed to solve the 1D magnetotelluric (MT) inverse problem using a Bayesian trans-dimensional Markov chain Monte Carlo algorithm. MT data are sensitive to the depth-distribution of rock electric conductivity (or its reciprocal, resistivity). The solution provided is a probability distribution - the so-called posterior probability distribution (PPD) for the conductivity at depth, together with the PPD of the interface depths. The PPD is sampled via a reversible-jump Markov Chain Monte Carlo (rjMcMC) algorithm, using a modified Metropolis-Hastings (MH) rule to accept or discard candidate models along the chains. As the optimal parameterization for the inversion process is generally unknown a trans-dimensional approach is used to allow the dataset itself to indicate the most probable number of parameters needed to sample the PPD. The algorithm is tested against two simulated datasets and a set of MT data acquired in the Clare Basin (County Clare, Ireland). For the simulated datasets the correct number of conductive layers at depth and the associated electrical conductivity values is retrieved, together with reasonable estimates of the uncertainties on the investigated parameters. Results from the inversion of field measurements are compared with results obtained using a deterministic method and with well-log data from a nearby borehole. The PPD is in good agreement with the well-log data, showing as a main structure a high conductive layer associated with the Clare Shale formation. In this study, we demonstrate that our new code go beyond algorithms developend using a linear inversion scheme, as it can be used: (1) to by-pass the subjective choices in the 1D parameterizations, i.e. the number of horizontal layers in the 1D parameterization, and (2) to estimate realistic uncertainties on the retrieved parameters. The algorithm is implemented using a simple MPI approach, where independent chains run on isolated CPU, to take full advantage of parallel computer architectures. In case of a large number of data, a master/slave appoach can be used, where the master CPU samples the parameter space and the slave CPUs compute forward solutions.
引用
收藏
页码:94 / 105
页数:12
相关论文
共 50 条
  • [31] An efficient interpolation technique for jump proposals in reversible-jump Markov chain Monte Carlo calculations
    Farr, W. M.
    Mandel, I.
    Stevens, D.
    ROYAL SOCIETY OPEN SCIENCE, 2015, 2 (06):
  • [32] Bayesian Multiple Emitter Fitting using Reversible Jump Markov Chain Monte Carlo
    Mohamadreza Fazel
    Michael J. Wester
    Hanieh Mazloom-Farsibaf
    Marjolein B. M. Meddens
    Alexandra S. Eklund
    Thomas Schlichthaerle
    Florian Schueder
    Ralf Jungmann
    Keith A. Lidke
    Scientific Reports, 9
  • [33] Parameter Identification in Degradation Modeling by Reversible-Jump Markov Chain Monte Carlo
    Zio, Enrico
    Zoia, Andrea
    IEEE TRANSACTIONS ON RELIABILITY, 2009, 58 (01) : 123 - 131
  • [34] Reversible jump Markov chain Monte Carlo signal detection in functional neuroimaging analysis
    Lukic, AS
    Wernick, MN
    Galatsanos, NP
    Yang, YY
    Strother, SC
    2004 2ND IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: MACRO TO NANO, VOLS 1 and 2, 2004, : 868 - 871
  • [35] REVERSIBLE JUMP MARKOV CHAIN MONTE CARLO METHOD FOR PARAMETER REDUCTION IN CLAIMS RESERVING
    Verrall, Richard J.
    Wuthrich, Mario V.
    NORTH AMERICAN ACTUARIAL JOURNAL, 2012, 16 (02) : 240 - 259
  • [36] Bayesian Multiple Emitter Fitting using Reversible Jump Markov Chain Monte Carlo
    Fazel, Mohamadreza
    Wester, Michael J.
    Mazloom-Farsibaf, Hanieh
    Meddens, Marjolein B. M.
    Eklund, Alexandra S.
    Schlichthaerle, Thomas
    Schueder, Florian
    Jungmann, Ralf
    Lidke, Keith A.
    SCIENTIFIC REPORTS, 2019, 9 (1)
  • [37] Bayesian phylogenetic model selection using reversible jump Markov chain Monte Carlo
    Huelsenbeck, JP
    Larget, B
    Alfaro, ME
    MOLECULAR BIOLOGY AND EVOLUTION, 2004, 21 (06) : 1123 - 1133
  • [38] Choice of dimension using reversible jump Markov chain Monte Carlo in the multidimensional scaling
    Qing Xiangyun
    Wang Xingyu
    PROCEEDINGS OF THE 26TH CHINESE CONTROL CONFERENCE, VOL 4, 2007, : 597 - +
  • [39] Reversible-jump Markov chain Monte Carlo for quantitative trait loci mapping
    van de Ven, R
    GENETICS, 2004, 167 (02) : 1033 - 1035
  • [40] Modelling heterotachy in phylogenetic inference by reversible-jump Markov chain Monte Carlo
    Pagel, Mark
    Meade, Andrew
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2008, 363 (1512) : 3955 - 3964