ON THE ERROR ANALYSIS OF STABILIZED FINITE ELEMENT METHODS FOR THE STOKES PROBLEM

被引:7
|
作者
Stenberg, Rolf [1 ]
Videman, Juha [2 ]
机构
[1] Aalto Univ, Dept Math & Syst Anal, Aalto 00076, Finland
[2] Univ Lisbon, Inst Super Tecn, CAMGSD Dept Matemat, P-1049001 Lisbon, Portugal
关键词
stabilized finite element methods; Galerkin least squares methods; Stokes problem; incompressible elasticity; a priori error estimates; a posteriori error estimates; COMPUTATIONAL FLUID-DYNAMICS; EQUATIONS; APPROXIMATION; FORMULATION; FLOW;
D O I
10.1137/140999396
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a family of stabilized mixed finite element methods for the Stokes equations a complete a priori and a posteriori error analysis is given.
引用
收藏
页码:2626 / 2633
页数:8
相关论文
共 50 条
  • [21] A posteriori error estimates of stabilized finite element method for the steady Navier-Stokes problem
    Zhang, Tong
    Zhao, Xin
    Lei, Gang
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (17) : 9081 - 9092
  • [22] A stabilized finite element analysis for a power-law pseudoplastic Stokes problem
    de Andrade Bortoloti, Marcio Antonio
    Karam-Filho, Jose
    APPLICABLE ANALYSIS, 2016, 95 (02) : 467 - 482
  • [23] A Stabilized Finite Element Method for the Stokes-Stokes Coupling Interface Problem
    Shahid Hussain
    Md. Abdullah Al Mahbub
    Feng Shi
    Journal of Mathematical Fluid Mechanics, 2022, 24
  • [24] An adaptive stabilized finite element method for the generalized Stokes problem
    Araya, Rodolfo
    Barrenechea, Gabriel R.
    Poza, Abner
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2008, 214 (02) : 457 - 479
  • [25] A Stabilized Finite Element Method for the Stokes-Stokes Coupling Interface Problem
    Hussain, Shahid
    Al Mahbub, Md Abdullah
    Shi, Feng
    JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2022, 24 (03)
  • [26] Acceleration of stabilized finite element discretizations for the Stokes eigenvalue problem
    Hehu Xie
    Xiaobo Yin
    Advances in Computational Mathematics, 2015, 41 : 799 - 812
  • [27] Acceleration of stabilized finite element discretizations for the Stokes eigenvalue problem
    Xie, Hehu
    Yin, Xiaobo
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2015, 41 (04) : 799 - 812
  • [28] AN ABSOLUTELY STABILIZED FINITE-ELEMENT METHOD FOR THE STOKES PROBLEM
    DOUGLAS, J
    WANG, JP
    MATHEMATICS OF COMPUTATION, 1989, 52 (186) : 495 - 508
  • [29] An unusual stabilized finite element method for a generalized stokes problem
    Barrenechea G.R.
    Valentin F.
    Numerische Mathematik, 2002, 92 (4) : 653 - 673
  • [30] An unusual stabilized finite element method for a generalized Stokes problem
    Barrenechea, GR
    Valentin, F
    NUMERISCHE MATHEMATIK, 2002, 92 (04) : 653 - 677