NADPH-dependent sulfite reductase flavoprotein adopts an extended conformation unique to this diflavin reductase

被引:9
|
作者
Tavolieri, Angela M. [1 ,2 ]
Murray, Daniel T. [1 ,2 ]
Askenasy, Isabel [1 ,2 ,4 ]
Pennington, Joseph M. [1 ,2 ]
McGarry, Lauren [1 ,2 ]
Stanley, Christopher B. [3 ]
Stroupe, M. Elizabeth [1 ,2 ]
机构
[1] Dept Biol Sci, 91 Chieftain Way, Tallahassee, FL 32306 USA
[2] Inst Mol Biophys, 91 Chieftain Way, Tallahassee, FL 32306 USA
[3] Oak Ridge Natl Lab, Neutron Scattering Div, POB 2008,MS 6743, Oak Ridge, TN 37831 USA
[4] Univ Wisconsin, Dept Biomol Chem, Sch Med & Publ Hlth, 440 Henry Mall,Biochem Sci Bldg,Room 4206C, Madison, WI 53706 USA
基金
美国国家科学基金会;
关键词
Flavoprotein; Diflavin reductase; Cytochrome p450 reductase; Electron transfer; X-ray crystallography; SANS; NITRIC-OXIDE SYNTHASE; HUMAN METHIONINE SYNTHASE; ESCHERICHIA-COLI HEMOFLAVOPROTEIN; CYTOCHROME P450 OXIDOREDUCTASE; ELECTRON-TRANSFER; ADENINE-DINUCLEOTIDE; NEUTRON-SCATTERING; CRYSTAL-STRUCTURE; STRUCTURAL BASIS; FLAVIN;
D O I
10.1016/j.jsb.2019.01.001
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
This is the first X-ray crystal structure of the monomeric form of sulfite reductase (SiR) flavoprotein (SiRFP-60) that shows the relationship between its major domains in an extended position not seen before in any homologous diflavin reductases. Small angle neutron scattering confirms this novel domain orientation also occurs in solution. Activity measurements of SiR and SiRFP variants allow us to propose a novel mechanism for electron transfer from the SiRFP reductase subunit to its oxidase metalloenzyme partner that, together, make up the SiR holoenzyme. Specifically, we propose that SiR performs its 6-electron reduction via intramolecular or intermolecular electron transfer. Our model explains both the significance of the stoichiometric mismatch between reductase and oxidase subunits in the holoenzyme and how SiR can handle such a large volume electron reduction reaction that is at the heart of the sulfur bio-geo cycle.
引用
收藏
页码:170 / 179
页数:10
相关论文
共 50 条
  • [31] Inactivation of an NADPH-dependent succinic semialdehyde reductase by o-phthalaldehyde
    Cho, SW
    Hong, JW
    Lee, SJ
    Choi, SY
    FEBS LETTERS, 1996, 382 (1-2) : 179 - 182
  • [32] Identification of a marine NADPH-dependent aldehyde reductase for chemoselective reduction of aldehydes
    Li, Guangyue
    Ren, Jie
    Wu, Qiaqing
    Feng, Jinhui
    Zhu, Dunming
    Ma, Yanhe
    JOURNAL OF MOLECULAR CATALYSIS B-ENZYMATIC, 2013, 90 : 17 - 22
  • [33] An NADPH-dependent reductase in neonatal pig testes that metabolizes androgens and xenobiotics
    Nakajin, S
    Minamikawa, N
    Baker, ME
    Toyoshima, S
    BIOLOGICAL & PHARMACEUTICAL BULLETIN, 1998, 21 (12) : 1356 - 1360
  • [35] THE NADPH-SULFITE REDUCTASE OF ESCHERICHIA-COLI IS A PARAQUAT REDUCTASE
    GAUDU, P
    FONTECAVE, M
    EUROPEAN JOURNAL OF BIOCHEMISTRY, 1994, 226 (02): : 459 - 463
  • [36] ROLE OF NADPH AND THE NADPH-DEPENDENT METHEMOGLOBIN REDUCTASE IN THE HYDROXYLASE-ACTIVITY OF HUMAN-ERYTHROCYTES
    BLISARD, KS
    MIEYAL, JJ
    ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 1981, 210 (02) : 762 - 769
  • [37] OPTIMIZED DETERMINATION AND PROPERTIES OF NADPH-DEPENDENT GLUTATHIONE REDUCTASE IN SERUM STUDIES ON SERUM GLUTATHIONE REDUCTASE .1.
    WEIDEMANN, G
    ZEITSCHRIFT FUR KLINISCHE CHEMIE UND KLINISCHE BIOCHEMIE, 1975, 13 (03): : 123 - 128
  • [38] NADPH-dependent reductases in dog thyroid: Comparison of a third enzyme ''glyceraldehyde reductase'' to dog thyroid aldehyde reductase
    Schaffhauser, MA
    Sato, S
    Kador, PF
    INTERNATIONAL JOURNAL OF BIOCHEMISTRY & CELL BIOLOGY, 1996, 28 (03): : 275 - 284
  • [39] FLAVIN INTERACTION IN NADPH-SULFITE REDUCTASE
    SIEGEL, LM
    FAEDER, EJ
    KAMIN, H
    ZEITSCHRIFT FUR NATURFORSCHUNG PART B-CHEMIE BIOCHEMIE BIOPHYSIK BIOLOGIE UND VERWANDTEN GEBIETE, 1972, B 27 (09): : 1087 - &
  • [40] Purification and properties of an unusual NADPH-dependent ketose reductase from the silverleaf whitefly
    Salvucci, ME
    Wolfe, GR
    Hendrix, DL
    INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY, 1998, 28 (5-6) : 357 - 363