Water-based Preparation of ZIF-8/Polyurethane Membranes

被引:0
|
作者
Lee, Ye-Chan [1 ]
Jeong, Yun-Gyeong [1 ]
Lee, Youn-Sik [1 ]
机构
[1] Jeonbuk Natl Univ, Div Chem Engn, 567 Baekje Daero, Jeonju 54896, Jeonbuk, South Korea
关键词
metal-organic framework; zeolitic imidazolate framework-8; polyurethane emulsion; zeolitic imidazolate framework-8/polyurethane hybrid membrane; ZIF-8; PERFORMANCE; SEPARATION; PARTICLES;
D O I
10.7317/pk.2022.46.6.820
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
In order to extend application field and improve processability of crystalline metal-organic frameworks (MOFs), recently MOF/polymer hybrid membranes have been actively studied. Such membranes are generally prepared from polymer solutions and MOF particles. In this research, we chose zeolitic imidazolate framework-8 (ZIF-8), one of MOF families, and attempted to prepare ZIF-8/polymer hybrid membranes without using any organic solvent. In order to improve dispersibility of ZIF-8 particles, ZIF-8 was prepared from an aqueous solution containing Zn2+, 2-methylimidazole and polystyrene sulfonate (PSS). Through dispersion of PSS@ZIF-8 particles along with a dispersing agent into a polyurethane (PU) emulsion and casting on a polystyrene substrate, transparent ZIF-8/PU membranes were successfully prepared (PSS@ZIF-8 content: maximum 41 wt%), and characterized with respect to their tensile properties and water uptakes.
引用
收藏
页码:820 / 826
页数:7
相关论文
共 50 条
  • [31] Immobilized glucoamylase based on ZIF-8: Preparation, response surface optimization, characterization
    Zong, Xuyan
    Huang, Min
    Wen, Lei
    Li, Yuanyi
    Li, Li
    JOURNAL OF FOOD SCIENCE, 2023, 88 (08) : 3460 - 3473
  • [32] Interfacial nanoarchitectonics for ZIF-8 membranes with enhanced gas separation
    Chen, Season S.
    Yang, Zhen-Jie
    Chang, Chia-Hao
    Koh, Hoong-Uei
    Al-Saeedi, Sameerah, I
    Tung, Kuo-Lun
    Wu, Kevin C-W
    BEILSTEIN JOURNAL OF NANOTECHNOLOGY, 2022, 13 : 313 - 324
  • [33] Gas separation in mixed matrix membranes based on polyurethane containing SiO2, ZSM-5, and ZIF-8 nanoparticles
    Amedi, Hamid Reza
    Aghajani, Masoud
    JOURNAL OF NATURAL GAS SCIENCE AND ENGINEERING, 2016, 35 : 695 - 702
  • [34] Development of ZIF-8 membranes: opportunities and challenges for commercial applications
    Lai, Zhiping
    CURRENT OPINION IN CHEMICAL ENGINEERING, 2018, 20 : 78 - 85
  • [35] Recovery of xenon from air over ZIF-8 membranes
    Wu, Ting
    Lucero, Jolie
    Sinnwell, Michael A.
    Thallapally, Praveen K.
    Carreon, Moises A.
    CHEMICAL COMMUNICATIONS, 2018, 54 (65) : 8976 - 8979
  • [36] Influence of Secondary Growth Conditions on ZIF-8 Membranes Structure
    Xu, Feng
    Wu, Juan
    Xu, Weicheng
    Chen, Xin
    Yan, Jian
    BASIC & CLINICAL PHARMACOLOGY & TOXICOLOGY, 2020, 126 : 82 - 82
  • [37] Interfacial nanoarchitectonics for ZIF-8 membranes with enhanced gas separation
    Chen S.S.
    Yang Z.-J.
    Chang C.-H.
    Koh H.-U.
    Al-Saeedi S.I.
    Tung K.-L.
    Wu K.C.-W.
    Beilstein Journal of Nanotechnology, 2022, 13 : 313 - 324
  • [38] Study on the Development of ZIF-8 Membranes for Gasoline Vapor Recovery
    Li, Jing
    Zhong, Jing
    Huang, Weiqiu
    Xu, Rong
    Zhang, Qi
    Shao, Hui
    Gu, Xuehong
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2014, 53 (09) : 3662 - 3668
  • [39] The PLA/ZIF-8 Nanocomposite Membranes: The Diameter and Surface Roughness Adjustment by ZIF-8 Nanoparticles, High Wettability, Improved Mechanical Property, and Efficient Oil/Water Separation
    Dai, Xiu
    Cao, Yu
    Shi, Xiaowei
    Wang, Xinlong
    ADVANCED MATERIALS INTERFACES, 2016, 3 (24):
  • [40] Formation of ZIF-8 membranes and crystals in a diluted aqueous solution
    Yao, Jianfeng
    Li, Lunxi
    Wong, Wei Hao Benjamin
    Tan, Chengzhen
    Dong, Dehua
    Wang, Huanting
    MATERIALS CHEMISTRY AND PHYSICS, 2013, 139 (2-3) : 1003 - 1008