Probing of carotenoid-tryptophan hydrogen bonding dynamics in the single-tryptophan photoactive Orange Carotenoid Protein

被引:18
|
作者
Maksimov, Eugene G. [1 ,2 ]
Protasova, Elena A. [1 ]
Tsoraev, Georgy V. [1 ]
Yaroshevich, Igor A. [1 ]
Maydykovskiy, Anton I. [3 ]
Shirshin, Evgeny A. [3 ]
Gostev, Timofey S. [1 ]
Jelzow, Alexander [5 ]
Moldenhauer, Marcus [4 ]
Slonimskiy, Yury B. [2 ]
Sluchanko, Nikolai N. [1 ,2 ]
Friedrich, Thomas [4 ]
机构
[1] Lomonosov Moscow State Univ, Dept Biophys, Fac Biol, Moscow 119991, Russia
[2] Russian Acad Sci, Fed Res Ctr Biotechnol, AN Bach Inst Biochem, Moscow 119071, Russia
[3] Moscow MV Lomonosov State Univ, Fac Phys, Dept Quantum Elect, Moscow 119992, Russia
[4] Tech Univ Berlin, Inst Chem PC 14, Str 17 Juni, D-10623 Berlin, Germany
[5] Becker & Hickl GmbH, Nunsdorfer Ring 7-9, D-12277 Berlin, Germany
基金
俄罗斯科学基金会; 俄罗斯基础研究基金会;
关键词
FLUORESCENCE LIFETIMES ORIGIN; ENERGY-TRANSFER; PHOTOPROTECTIVE MECHANISM; RECOVERY PROTEIN; SIGNALING STATE; IN-VITRO; X-RAY; REVEALS; CHLOROPHYLLS; DOMAINS;
D O I
10.1038/s41598-020-68463-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The photoactive Orange Carotenoid Protein (OCP) plays a key role in cyanobacterial photoprotection. In OCP, a single non-covalently bound keto-carotenoid molecule acts as a light intensity sensor, while the protein is responsible for forming molecular contacts with the light-harvesting antenna, the fluorescence of which is quenched by OCP. Activation of this physiological interaction requires signal transduction from the photoexcited carotenoid to the protein matrix. Recent works revealed an asynchrony between conformational transitions of the carotenoid and the protein. Intrinsic tryptophan (Trp) fluorescence has provided valuable information about the protein part of OCP during its photocycle. However, wild-type OCP contains five Trp residues, which makes extraction of site-specific information impossible. In this work, we overcame this problem by characterizing the photocycle of a fully photoactive OCP variant (OCP-3FH) with only the most critical tryptophan residue (Trp-288) in place. Trp-288 is of special interest because it forms a hydrogen bond to the carotenoid's keto-oxygen to keep OCP in its dark-adapted state. Using femtosecond pump-probe fluorescence spectroscopy we analyzed the photocycle of OCP-3FH and determined the formation rate of the very first intermediate suggesting that generation of the recently discovered S* state of the carotenoid in OCP precedes the breakage of the hydrogen bonds. Therefore, following Trp fluorescence of the unique photoactive OCP-3FH variant, we identified the rate of the H-bond breakage and provided novel insights into early events accompanying photoactivation of wild-type OCP.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Orange Carotenoid Protein Picosecond Dynamics Changes with Photo and Chemical Activation
    Deng, Yanting
    Xu, Mengyang
    Liu, Haijun
    Blankenship, Robert E.
    Markelz, Andrea G.
    [J]. BIOPHYSICAL JOURNAL, 2017, 112 (03) : 441A - 441A
  • [22] Fluorescence and Excited-State Conformational Dynamics of the Orange Carotenoid Protein
    Gurchiek, Jason K.
    Bao, Han
    Dominguez-Martin, Maria Agustina
    McGovern, Sarah E.
    Marquardt, Claire E.
    Roscioli, Jerome D.
    Ghosh, Soumen
    Kerfeld, Cheryl A.
    Beck, Warren F.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY B, 2018, 122 (06): : 1792 - 1800
  • [23] Molecular Mechanisms of Activation in the Orange Carotenoid Protein Revealed by Molecular Dynamics
    Bondanza, Mattia
    Cupellini, Lorenzo
    Faccioli, Pietro
    Mennucci, Benedetta
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2020, 142 (52) : 21829 - 21841
  • [24] How orange carotenoid protein controls the excited state dynamics of canthaxanthin
    Arcidiacono, Amanda
    Accomasso, Davide
    Cupellini, Lorenzo
    Mennucci, Benedetta
    [J]. CHEMICAL SCIENCE, 2023, 14 (40) : 11158 - 11169
  • [25] Characterization of the Folding of a 52-Knotted Protein Using Engineered Single-Tryptophan Variants
    Zhang, Hongyu
    Jackson, Sophie E.
    [J]. BIOPHYSICAL JOURNAL, 2016, 111 (12) : 2587 - 2599
  • [26] Engineered disulfide in the orange carotenoid protein enables control of its structural dynamics associated with photoprotection function and carotenoid transfer
    Slonimskiy, Y.
    Maksimov, E.
    Lukashev, E.
    Moldenhauer, M.
    Friedrich, T.
    Sluchanko, N.
    [J]. FEBS OPEN BIO, 2021, 11 : 185 - 186
  • [27] Fluorescence and excited-state conformational dynamics of ketocarotenoids in the orange carotenoid protein
    Gurchiek, Jason
    Bao, Han
    Dominguez-Martin, Maria
    McGovern, Sarah
    Roscioli, Jerome
    Kerfeld, Cheryl
    Beck, Warren
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 256
  • [28] Single-Tryptophan Phosphorescence of Human Serum Albumin Embedded in Sugar Matrices: Protein Dynamics on the Millisecond to Second Time-scale
    Draganski, Andrew
    Ludescher, Richard
    Wang, Ping
    [J]. BIOPHYSICAL JOURNAL, 2012, 102 (03) : 49A - 49A
  • [29] A Single Amino Acid Substitution in an ORANGE Protein Promotes Carotenoid Overaccumulation in Arabidopsis
    Yuan, Hui
    Owsiany, Katherine
    Sheeja, T. E.
    Zhou, Xiangjun
    Rodriguez, Caroline
    Li, Yongxi
    Welsch, Ralf
    Chayut, Noam
    Yang, Yong
    Thannhauser, Theodore W.
    Parthasarathy, Mandayam V.
    Xu, Qiang
    Deng, Xiuxin
    Fei, Zhangjun
    Schaffer, Ari
    Katzir, Nurit
    Burger, Joseph
    Tadmor, Yaakov
    Li, Li
    [J]. PLANT PHYSIOLOGY, 2015, 169 (01) : 421 - +
  • [30] Role of hydrogen bond alternation and charge transfer states in photoactivation of the Orange Carotenoid Protein
    Igor A. Yaroshevich
    Eugene G. Maksimov
    Nikolai N. Sluchanko
    Dmitry V. Zlenko
    Alexey V. Stepanov
    Ekaterina A. Slutskaya
    Yury B. Slonimskiy
    Viacheslav S. Botnarevskii
    Alina Remeeva
    Ivan Gushchin
    Kirill Kovalev
    Valentin I. Gordeliy
    Ivan V. Shelaev
    Fedor E. Gostev
    Dmitry Khakhulin
    Vladimir V. Poddubnyy
    Timofey S. Gostev
    Dmitry A. Cherepanov
    Tomáš Polívka
    Miroslav Kloz
    Thomas Friedrich
    Vladimir Z. Paschenko
    Victor A. Nadtochenko
    Andrew B. Rubin
    Mikhail P. Kirpichnikov
    [J]. Communications Biology, 4