Exploiting the Accumulated Evidence for Gene Selection in Microarray Gene Expression Data

被引:0
|
作者
Prat-Masramon, Gabriel [1 ]
Belanche-Munoz, Lluis A. [1 ]
机构
[1] Tech Univ Catalonia, Barcelona, Spain
来源
ECAI 2010 - 19TH EUROPEAN CONFERENCE ON ARTIFICIAL INTELLIGENCE | 2010年 / 215卷
关键词
CLASSIFICATION; CANCER;
D O I
10.3233/978-1-60750-606-5-989
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Feature subset selection (FSS) methods play an important role for cancer classification using microarray gene expression data. In this scenario, it is extremely important to select genes by taking into account the possible interactions with other gene subsets. This paper shows that, by accumulating the evidence in favour (or against) each gene along a search process, the obtained gene subsets may constitute better solutions, either in terms of size or in predictive accuracy, or in both, at a negligible overhead in computational cost.
引用
收藏
页码:989 / +
页数:2
相关论文
共 50 条
  • [21] New Gene Selection Method Using Gene Expression Programing Approach on Microarray Data Sets
    Alanni, Russul
    Hou, Jingyu
    Azzawi, Hasseeb
    Xiang, Yong
    COMPUTER AND INFORMATION SCIENCE (ICIS 2018), 2019, 791 : 17 - 31
  • [22] Gene Correlation Guided Gene Selection for Microarray Data Classification
    Yang, Dong
    Zhu, Xuchang
    BIOMED RESEARCH INTERNATIONAL, 2021, 2021
  • [23] Analysis of microarray gene expression data
    Pham, Tuan D.
    Wells, Christine
    Crane, Denis I.
    CURRENT BIOINFORMATICS, 2006, 1 (01) : 37 - 53
  • [24] Exploiting Gene-Expression Data
    Liszewski, Kathy
    GENETIC ENGINEERING & BIOTECHNOLOGY NEWS, 2012, 32 (07): : 1 - +
  • [25] Exploiting gene-expression data
    Liszewski, Kathy
    Genetic Engineering and Biotechnology News, 2012, 32 (07): : 30 - 32
  • [26] Visualization of microarray gene expression data
    Prasad, Tangirala Venkateswara
    Ahson, Syed Ismail
    BIOINFORMATION, 2006, 1 (04) : 141 - 145
  • [27] Analyzing microarray gene expression data
    Lewin, A
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-STATISTICS IN SOCIETY, 2005, 168 : 876 - 877
  • [28] Microarray gene expression data analysis
    Vachtsevanos, G
    Ding, YH
    Fairley, JA
    Gardner, AB
    Simeonova, P
    2004 2ND IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: MACRO TO NANO, VOLS 1 AND 2, 2004, : 105 - 108
  • [29] Sample selection for microarray gene expression studies
    Repsilber, D
    Fink, L
    Jacobsen, M
    Bläsing, O
    Ziegler, A
    METHODS OF INFORMATION IN MEDICINE, 2005, 44 (03) : 461 - 467
  • [30] Efficient gene selection for classification of microarray data
    Ho, SY
    Lee, CC
    Chen, HM
    Huang, HL
    2005 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-3, PROCEEDINGS, 2005, : 1753 - 1760