Tunable gallium nitride-based devices for ultrafast signal processing

被引:0
|
作者
Xie, Peng [1 ,2 ,3 ,6 ]
Wen, Yu [4 ]
Yang, Wenqiang [1 ,6 ]
Wan, Zishen [2 ,3 ]
Liu, Jiarui [5 ]
Wang, Xinyu [1 ,6 ]
Da, Siqi [6 ]
Wang, Yishan [6 ]
机构
[1] Chinese Acad Sci, XIOPM, State Key Lab Transient Opt & Photon, Xian 710119, Shaanxi, Peoples R China
[2] MIT, Dept Mech Engn, Cambridge, MA 02139 USA
[3] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA
[4] Natl Univ Def Technol, Changsha 410073, Hunan, Peoples R China
[5] Sun Yat Sen Univ, Guangzhou 510000, Guangdong, Peoples R China
[6] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
来源
MODERN PHYSICS LETTERS B | 2019年 / 33卷 / 17期
关键词
Gallium nitride; graphene; waveguides; ultrafast signal processing; THERMAL-CONDUCTIVITY; GRAPHENE; SINGLE;
D O I
10.1142/S0217984919501872
中图分类号
O59 [应用物理学];
学科分类号
摘要
In this paper, we propose a micro-ring resonator model based on gallium nitride (GaN) and graphene, which exhibits tunable properties of nonlinearity. It provides a great bandwidth covering from visible to telecommunication band. Especially, based on the characteristic of GaN, it has unique advantages in shorter wavelength, which is used for demonstrating the ultrafast signal processing including wavelength conversion, temporal amplification and pulse compression. Moreover, the tunable signal processing is achieved via the method of applying additional bias voltage to graphene without changing the geometric dimension of the device. These results have significant potential applications of nonlinear optics and optical communications.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Gallium nitride-based microwave and RF control devices
    Caverly, RH
    Drozdovski, NV
    Quinn, MJ
    [J]. MICROWAVE JOURNAL, 2001, 44 (02) : 112 - +
  • [2] Gallium nitride-based microwave and RF control devices
    [J]. 1600, Horizon House (44):
  • [3] Dynamic Performance Characterization Techniques in Gallium Nitride-Based Electronic Devices
    De Santi, Carlo
    Buffolo, Matteo
    Meneghesso, Gaudenzio
    Zanoni, Enrico
    Meneghini, Matteo
    [J]. CRYSTALS, 2021, 11 (09)
  • [4] Large-signal modeling of microwave gallium nitride-based HFETs
    Drozdovski, NV
    Caverly, RH
    Quinn, MJ
    [J]. APMC 2001: ASIA-PACIFIC MICROWAVE CONFERENCE, VOLS 1-3, PROCEEDINGS, 2001, : 248 - 251
  • [5] Kerr Nonlinear Optical Signal Processing in Ultra-silicon-rich Nitride-based Devices
    Tan, D. T. H.
    Ooi, K. J. A.
    Ng, D. K. T.
    Sahin, E.
    Choi, J. W.
    Xing, P.
    Chen, G. F. R.
    Sohn, B. U.
    Gao, H.
    [J]. 2019 PHOTONICS & ELECTROMAGNETICS RESEARCH SYMPOSIUM - SPRING (PIERS-SPRING), 2019, : 274 - 279
  • [6] Advances in gallium nitride-based electronics
    Adesida, I.
    Kumar, V.
    [J]. EDSSC: 2007 IEEE INTERNATIONAL CONFERENCE ON ELECTRON DEVICES AND SOLID-STATE CIRCUITS, VOLS 1 AND 2, PROCEEDINGS, 2007, : 1 - 6
  • [7] Integrating ultraviolet sensing and memory functions in gallium nitride-based optoelectronic devices
    Chang, Kuan-Chang
    Feng, Xibei
    Duan, Xinqing
    Liu, Huangbai
    Liu, Yanxin
    Peng, Zehui
    Lin, Xinnan
    Li, Lei
    [J]. NANOSCALE HORIZONS, 2024, 9 (07) : 1166 - 1174
  • [8] High power effects in gallium nitride-based microwave and RF control devices
    Caverly, RH
    Drozdovski, N
    Quinn, M
    [J]. RAWCON2000: 2000 IEEE RADIO AND WIRELESS CONFERENCE, PROCEEDINGS, 2000, : 151 - 154
  • [9] Design and fabrication of high electron mobility transistor devices with gallium nitride-based
    Zhu Yan-Xu
    Song Hui-Hui
    Wang Yue-Hua
    Li Lai-Long
    Shi Dong
    [J]. ACTA PHYSICA SINICA, 2017, 66 (24)
  • [10] Gallium nitride-based potentiometric anion sensor
    Chaniotakis, NA
    Alifragis, Y
    Konstantinidis, G
    Georgakilas, A
    [J]. ANALYTICAL CHEMISTRY, 2004, 76 (18) : 5552 - 5556