An approximation of anisotropic metrics from higher order interpolation error for triangular mesh adaptation

被引:8
|
作者
Hecht, Frederic [1 ,2 ]
Kuate, Raphael [1 ,3 ]
机构
[1] Univ Paris 06, UMR 7598, Lab Jacques Louis Lions, F-75005 Paris, France
[2] CNRS, UMR 7598, Lab Jacques Louis Lions, F-75005 Paris, France
[3] Univ Paris Est, IFSTTAR, COSYS, F-77447 Marne La Vallee, France
关键词
Mesh adaptation; Metrics; Interpolation error estimates; Finite elements; Anisotropy; FINITE-ELEMENT METHODS; STOKES PROBLEM; ESTIMATOR;
D O I
10.1016/j.cam.2013.09.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose an efficient algorithm for the numerical approximation of metrics, used for anisotropic mesh adaptation on triangular meshes with finite element computations. We derive the metrics from interpolation error estimates expressed in terms of higher order derivatives, for the,P-k-Lagrange finite element, k > 1. Numerical examples of mesh adaptation done using metrics computed with our Algorithm, and derived from higher order derivatives as error estimates, show that we obtain the right directions of anisotropy. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:99 / 115
页数:17
相关论文
共 50 条
  • [31] Anisotropic error bounds of Lagrange interpolation with any order in two and three dimensions
    Chen, Shaochun
    Zheng, Yanjun
    Mao, Shipeng
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2011, 217 (22) : 9313 - 9321
  • [32] Convergence on layer-adapted meshes and anisotropic interpolation error estimates of non-standard higher order finite elements
    Franz, Sebastian
    Matthies, Gunar
    [J]. APPLIED NUMERICAL MATHEMATICS, 2011, 61 (06) : 723 - 737
  • [33] Anisotropic mesh adaptation for continuous finite element discretization through mesh optimization via error sampling and synthesis
    Carson, Hugh A.
    Huang, Arthur C.
    Galbraith, Marshall C.
    Allmaras, Steven R.
    Darmofal, David L.
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 420
  • [34] A new anisotropic mesh adaptation method based upon hierarchical a posteriori error estimates
    Huang, Weizhang
    Kamenski, Lennard
    Lang, Jens
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2010, 229 (06) : 2179 - 2198
  • [35] Hessian-Free Metric-Based Mesh Adaptation via Geometry of Interpolation Error
    Agouzal, A.
    Lipnikov, K.
    Vassilevski, Yu.
    [J]. COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2010, 50 (01) : 124 - 138
  • [36] Hessian-free metric-based mesh adaptation via geometry of interpolation error
    A. Agouzal
    K. Lipnikov
    Yu. Vassilevski
    [J]. Computational Mathematics and Mathematical Physics, 2010, 50 : 124 - 138
  • [37] EXTENDING ERROR BOUNDS FOR RADIAL BASIS FUNCTION INTERPOLATION TO MEASURING THE ERROR IN HIGHER ORDER SOBOLEV NORMS
    Hangelbroek, T.
    Rieger, C.
    [J]. MATHEMATICS OF COMPUTATION, 2024,
  • [38] Moving curved mesh adaptation for higher-order finite element simulations
    Luo, Xiao-Juan
    Shephard, Mark S.
    Lee, Lie-Quan
    Ge, Lixin
    Ng, Cho
    [J]. ENGINEERING WITH COMPUTERS, 2011, 27 (01) : 41 - 50
  • [39] Quasi- a priori mesh adaptation and extrapolation to higher order using τ-estimation
    Fraysse, F.
    Rubio, G.
    De Vicente, J.
    Valero, E.
    [J]. Aerospace Science and Technology, 2014, 38 : 76 - 87
  • [40] Quasi-a priori mesh adaptation and extrapolation to higher order using τ-estimation
    Fraysse, F.
    Rubio, G.
    de Vicente, J.
    Valero, E.
    [J]. AEROSPACE SCIENCE AND TECHNOLOGY, 2014, 38 : 76 - 87