An approximation of anisotropic metrics from higher order interpolation error for triangular mesh adaptation

被引:8
|
作者
Hecht, Frederic [1 ,2 ]
Kuate, Raphael [1 ,3 ]
机构
[1] Univ Paris 06, UMR 7598, Lab Jacques Louis Lions, F-75005 Paris, France
[2] CNRS, UMR 7598, Lab Jacques Louis Lions, F-75005 Paris, France
[3] Univ Paris Est, IFSTTAR, COSYS, F-77447 Marne La Vallee, France
关键词
Mesh adaptation; Metrics; Interpolation error estimates; Finite elements; Anisotropy; FINITE-ELEMENT METHODS; STOKES PROBLEM; ESTIMATOR;
D O I
10.1016/j.cam.2013.09.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose an efficient algorithm for the numerical approximation of metrics, used for anisotropic mesh adaptation on triangular meshes with finite element computations. We derive the metrics from interpolation error estimates expressed in terms of higher order derivatives, for the,P-k-Lagrange finite element, k > 1. Numerical examples of mesh adaptation done using metrics computed with our Algorithm, and derived from higher order derivatives as error estimates, show that we obtain the right directions of anisotropy. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:99 / 115
页数:17
相关论文
共 50 条
  • [1] Anisotropic metrics for mesh adaptation
    Frey, PJ
    Alauzet, F
    [J]. COMPUTATIONAL FLUID AND SOLID MECHANICS 2003, VOLS 1 AND 2, PROCEEDINGS, 2003, : 1936 - 1938
  • [2] An interpolation error estimate on anisotropic meshes in Rn and optimal metrics for mesh refinement
    Cao, Weiming
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2007, 45 (06) : 2368 - 2391
  • [3] On the approximation order of triangular Shepard interpolation
    Dell'Accio, Francesco
    Di Tommaso, Filomena
    Hormann, Kai
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 2016, 36 (01) : 359 - 379
  • [4] Anisotropic measures of third order derivatives and the quadratic interpolation error on triangular elements
    Cao, Weiming
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2007, 29 (02): : 756 - 781
  • [5] Anisotropic mesh adaptation through hierarchical error estimators
    Fortin, M
    [J]. SCIENTIFIC COMPUTING AND APPLICATIONS, 2001, 7 : 53 - 65
  • [6] An interpolation error estimate in R2 based on the anisotropic measures of higher order derivatives
    Cao, Weiming
    [J]. MATHEMATICS OF COMPUTATION, 2008, 77 (261) : 265 - 286
  • [7] An Anisotropic hp-mesh Adaptation Method for Time-Dependent Problems Based on Interpolation Error Control
    Vít Dolejší
    Georg May
    [J]. Journal of Scientific Computing, 2023, 95
  • [8] An Anisotropic hp-mesh Adaptation Method for Time-Dependent Problems Based on Interpolation Error Control
    Dolejsi, Vit
    May, Georg
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2023, 95 (02)
  • [9] High Order Interpolation Error Analysis Based on Triangular Interpolations
    Luo, Wen
    Liu, Jinbo
    Li, Zengrui
    Song, Jiming
    [J]. PROCEEDINGS OF THE 2020 IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL ELECTROMAGNETICS (ICCEM 2020), 2020, : 79 - 80
  • [10] An anisotropic unstructured triangular adaptive mesh algorithm based on error and error gradient information
    Marcuzzi, F.
    Cecchi, M. Morandi
    Venturin, M.
    [J]. MATHEMATICS AND COMPUTERS IN SIMULATION, 2008, 78 (5-6) : 645 - 652