Similarity solutions for capillary pinch-off in fluids of differing viscosity

被引:78
|
作者
Zhang, WW [1 ]
Lister, JR
机构
[1] Harvard Univ, Div Engn & Appl Sci, Cambridge, MA 02138 USA
[2] Univ Cambridge, Dept Appl Math & Theoret Phys, Inst Theoret Geophys, Cambridge CB3 9EW, England
关键词
D O I
10.1103/PhysRevLett.83.1151
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Self-similar profiles associated with capillary instability of a fluid thread of viscosity lambda eta in surrounding fluid of viscosity eta are obtained for 1/16 less than or equal to lambda less than or equal to 16 via a simplified numerical scheme. Universal similarity scaling is preserved despite an asymptotically large velocity in the pinching neck driven by nonlocal dynamics. The numerical results agree well with experimental measurements by Cohen et al. [preceding Letter, Phys. Rev. Lett. 83, 1147 (1999)]. For all lambda, the self-similar profile is asymmetric and conical far from the minimum. The steep cone slope increases monotonically with lambda; the shallow cone slope is maximized around lambda = 1/4.
引用
收藏
页码:1151 / 1154
页数:4
相关论文
共 50 条
  • [1] Capillary pinch-off in inviscid fluids
    Leppinen, D
    Lister, JR
    PHYSICS OF FLUIDS, 2003, 15 (02) : 568 - 578
  • [2] Stability of similarity solutions of viscous thread pinch-off
    Dallaston, Michael C.
    Zhao, Chengxi
    Sprittles, James E.
    Eggers, Jens
    PHYSICAL REVIEW FLUIDS, 2021, 6 (10)
  • [3] Self-similar solutions for viscous capillary pinch-off
    Sierou, A
    Lister, JR
    JOURNAL OF FLUID MECHANICS, 2003, 497 (497) : 381 - 403
  • [4] The effect of liquid viscosity on bubble pinch-off
    Bolanos-Jimenez, R.
    Sevilla, A.
    Martinez-Bazan, C.
    van der Meer, D.
    Gordillo, J. M.
    PHYSICS OF FLUIDS, 2009, 21 (07)
  • [5] Capillary breakup of suspensions near pinch-off
    Mathues, Wouter
    McIlroy, Claire
    Harlen, Oliver G.
    Clasen, Christian
    PHYSICS OF FLUIDS, 2015, 27 (09)
  • [6] Scaling in pinch-off of generalized Newtonian fluids
    Doshi, P
    Suryo, R
    Yildirim, OE
    McKinley, GH
    Basaran, OA
    JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 2003, 113 (01) : 1 - 27
  • [7] Pinch-off syndrome
    Staniscia, Giancarlo
    Perenze, Barbara
    De Nicola, Frica
    Poti, Oscar
    ANNALI ITALIANI DI CHIRURGIA, 2008, 79 (06) : 463 - 465
  • [8] Self-similar pinch-off of power law fluids
    Doshi, P
    Basaran, OA
    PHYSICS OF FLUIDS, 2004, 16 (03) : 585 - 593
  • [9] Bubble pinch-off in Newtonian and non-Newtonian fluids
    Jiang, Xiao F.
    Zhu, Chunying
    Li, Huai Z.
    CHEMICAL ENGINEERING SCIENCE, 2017, 170 : 98 - 104
  • [10] Forced Wetting Transition and Bubble Pinch-Off in a Capillary Tube
    Zhao, Benzhong
    Pahlavan, Amir Alizadeh
    Cueto-Felgueroso, Luis
    Juanes, Ruben
    PHYSICAL REVIEW LETTERS, 2018, 120 (08)