Integrable hierarchies of nonlinear difference-difference equations and symmetries

被引:26
|
作者
Levi, D
Martina, L
机构
[1] Univ Roma Tre, Dipartimento Fis E Amaldi, I-00146 Rome, Italy
[2] Ist Nazl Fis Nucl, I-00146 Rome, Italy
[3] Univ Lecce, Dipartimento Fis, I-73100 Lecce, Italy
[4] Ist Nazl Fis Nucl, Sez Lecce, Lecce, Italy
来源
关键词
D O I
10.1088/0305-4470/34/48/302
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We construct the hierarchy of nonlinear difference-difference equations associated with the discrete Schrodinger spectral problem. As examples of equations contained in this hierarchy we obtain the discrete-time Toda and Volterra lattice equations. In the case of the time-discrete Toda lattice, we construct its Lie point and generalized symmetries. Finally, we present its Backlund transformations and relate it to the already constructed symmetries.
引用
收藏
页码:10357 / 10368
页数:12
相关论文
共 50 条
  • [31] Difference equations and cluster algebras I: Poisson bracket for integrable difference equations
    Inoue, Rei
    Nakanishi, Tomoki
    INFINITE ANALYSIS 2010: DEVELOPMENTS IN QUANTUM INTEGRABLE SYSTEMS, 2011, B28 : 63 - 88
  • [32] Conservation laws for integrable difference equations
    Rasin, Olexandr G.
    Hydon, Peter E.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (42) : 12763 - 12773
  • [33] On some class of homogeneous polynomials and explicit form of integrable hierarchies of differential-difference equations
    Svinin, A. K.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (16)
  • [34] SPECTRUM AND SYMMETRIES OF THE IMPULSIVE DIFFERENCE EQUATIONS
    Bayram, Elgiz
    Cebesoy, Serifenur
    Solmaz, Seyda
    COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2021, 70 (01): : 38 - 51
  • [35] SYMMETRIES AND CONSERVATION LAWS OF DIFFERENCE EQUATIONS
    Zharinov, V. V.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2011, 168 (02) : 1019 - 1034
  • [36] Symmetries and integrability of difference equations PREFACE
    Levi, Decio
    Olver, Peter
    Thomova, Zora
    Winternitz, Pavel
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (45)
  • [37] Discrete Lie symmetries for difference equations
    Levi, D
    Rodríguez, MA
    GROUP THEORY AND NUMERICAL ANALYSIS, 2005, 39 : 179 - 189
  • [38] Asymptotic symmetries of difference equations on a lattice
    Gaeta, G
    Levi, D
    Mancinelli, R
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2005, 12 (Suppl 2) : 137 - 146
  • [39] Lie symmetries of multidimensional difference equations
    Levi, D
    Tremblay, S
    Winternitz, P
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (44): : 9507 - 9524
  • [40] Discrete derivatives and symmetries of difference equations
    Levi, D
    Negro, J
    del Olmo, MA
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (10): : 2023 - 2030