nanoTRON: a Picasso module for MLP-based classification of super-resolution data

被引:11
|
作者
Auer, Alexander [1 ,2 ,3 ]
Strauss, Maximilian T. [3 ]
Strauss, Sebastian [1 ,2 ,3 ]
Jungmann, Ralf [1 ,2 ,3 ]
机构
[1] Ludwig Maximilians Univ Munchen, Dept Phys, D-80539 Munich, Germany
[2] Ludwig Maximilians Univ Munchen, Ctr Nanosci, D-80539 Munich, Germany
[3] Max Planck Inst Biochem, D-82152 Martinsried, Germany
基金
欧洲研究理事会;
关键词
DNA; MICROSCOPY; KINETICS; BINDING;
D O I
10.1093/bioinformatics/btaa154
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: Classification of images is an essential task in higher-level analysis of biological data. By bypassing the diffraction limit of light, super-resolution microscopy opened up a new way to look at molecular details using light microscopy, producing large amounts of data with exquisite spatial detail. Statistical exploration of data usually needs initial classification, which is up to now often performed manually. Results: We introduce nanoTRON, an interactive open-source tool, which allows super-resolution data classification based on image recognition. It extends the software package Picasso with the first deep learning tool with a graphic user interface.
引用
收藏
页码:3620 / 3622
页数:3
相关论文
共 50 条
  • [21] Super-Resolution from Noisy Data
    Emmanuel J. Candès
    Carlos Fernandez-Granda
    [J]. Journal of Fourier Analysis and Applications, 2013, 19 : 1229 - 1254
  • [22] Super-Resolution Analysis for Landfill Waste Classification
    Molina, Matias
    Ribeiro, Rita P.
    Veloso, Bruno
    Carna, Joao
    [J]. ADVANCES IN INTELLIGENT DATA ANALYSIS XXII, PT I, IDA 2024, 2024, 14641 : 155 - 166
  • [23] Super-Resolution from Noisy Data
    Candes, Emmanuel J.
    Fernandez-Granda, Carlos
    [J]. JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2013, 19 (06) : 1229 - 1254
  • [24] FAST VIDEO SUPER-RESOLUTION VIA CLASSIFICATION
    Simonyan, K.
    Grishin, S.
    Vatolin, D.
    Popov, D.
    [J]. 2008 15TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1-5, 2008, : 349 - 352
  • [25] Super-resolution for FOPEN SAR data
    Shekarforoush, H
    Banerjee, A
    Chellappa, R
    [J]. SIGNAL PROCESSING, SENSOR FUSION, AND TARGET RECOGNITION VIII, 1999, 3720 : 123 - 129
  • [26] TENSOR SUPER-RESOLUTION FOR SEISMIC DATA
    Liao, Songjie
    Liu, Xiao-Yang
    Qian, Feng
    Yin, Miao
    Hu, Guang-Min
    [J]. 2019 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2019, : 8598 - 8602
  • [27] Super-resolution in optical data storage
    Brand, U
    Hester, G
    Grochmalicki, J
    Pike, R
    [J]. JOURNAL OF OPTICS A-PURE AND APPLIED OPTICS, 1999, 1 : 794 - 800
  • [28] Joint Super-Resolution and Classification Based on Bidirectional Mapping and Multiple Constraints
    Yuan, Zijian
    Chang, Kan
    Liu, Zhiquan
    Wei, Xinjie
    Chen, Boning
    [J]. 2023 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, ICME, 2023, : 486 - 491
  • [29] A Disparity Feature Alignment Module for Stereo Image Super-Resolution
    Dan, Jiawang
    Qu, Zhaowei
    Wang, Xiaoru
    Gu, Jiahang
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2021, 28 : 1285 - 1289
  • [30] Deep Residual Network with Enhanced Upscaling Module for Super-Resolution
    Kim, Jun-Hyuk
    Lee, Jong-Seok
    [J]. PROCEEDINGS 2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW), 2018, : 913 - 921