Splittable Zariski surfaces II

被引:0
|
作者
Lang, Jeffrey [1 ]
机构
[1] Univ Kansas, Math Dept, Lawrence, KS 66045 USA
关键词
Divisor class groups; generic; splittable; Zariski surfaces;
D O I
10.1080/00927872.2018.1501579
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let k be an algebraically closed field of characteristic p > 0 and . Let be the variety defined by the equation . If g is a product of n linear factors in , not necessarily homogeneous, where n equals the degree of g, we say that X-g is splittable. In this article, we calculate the group of Weil divisors of a splittable X-g for a generic g when the characteristic of k is greater than 2. We then use this calculation to determine the group of Weil divisors of generic splittable Zariski hypersurfaces in all characteristics greater than 2.
引用
收藏
页码:1238 / 1247
页数:10
相关论文
共 50 条
  • [22] Zariski chambers on surfaces of high Picard number
    Bauer, Thomas
    Schmitz, David
    [J]. LMS JOURNAL OF COMPUTATION AND MATHEMATICS, 2012, 15 : 219 - 230
  • [23] THE EXISTENCE OF ZARISKI DENSE ORBITS FOR ENDOMORPHISMS OF PROJECTIVE SURFACES
    Xie, Junyi
    [J]. JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2022,
  • [24] Weyl and Zariski chambers on K3 surfaces
    Bauer, Thomas
    Funke, Michael
    [J]. FORUM MATHEMATICUM, 2012, 24 (03) : 609 - 625
  • [25] A new algorithm for computing class groups of Zariski surfaces
    Lang, Jeffrey
    [J]. ARABIAN JOURNAL OF MATHEMATICS, 2013, 2 (03) : 287 - 293
  • [26] ON INTEGRAL ZARISKI DECOMPOSITIONS OF PSEUDOEFFECTIVE DIVISORS ON ALGEBRAIC SURFACES
    Harbourne, B.
    Pokora, P.
    Tutaj-Gasinska, H.
    [J]. ELECTRONIC RESEARCH ANNOUNCEMENTS IN MATHEMATICAL SCIENCES, 2015, 22 : 103 - 108
  • [27] On the Zariski-Lipman Conjecture for normal algebraic surfaces
    Biswas, Indranil
    Gurjar, R. V.
    Kolte, Sagar U.
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2014, 90 : 270 - 286
  • [28] The Zariski Topology on the Second Spectrum of a Module (II)
    Ansari-Toroghy, H.
    Keyvani, S.
    Farshadifar, F.
    [J]. BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2016, 39 (03) : 1089 - 1103
  • [29] The Zariski Topology on the Second Spectrum of a Module (II)
    H. Ansari-Toroghy
    S. Keyvani
    F. Farshadifar
    [J]. Bulletin of the Malaysian Mathematical Sciences Society, 2016, 39 : 1089 - 1103
  • [30] Geometry of bisections of elliptic surfaces and Zariski -plets for conic arrangements
    Bannai, Shinzo
    Tokunaga, Hiro-o
    [J]. GEOMETRIAE DEDICATA, 2015, 178 (01) : 219 - 237