Fixed point theorems for a class of nonlinear operators in Hilbert spaces with lattice structure and application

被引:13
|
作者
Cui, Yujun [1 ]
Sun, Jingxian [2 ]
机构
[1] Shandong Univ Sci & Technol, Dept Math, Qingdao 266590, Peoples R China
[2] Jiangsu Normal Univ, Dept Math, Xuzhou 221116, Peoples R China
关键词
Hilbert Space; Lattice Structure; Fixed Point Theorem; Bounded Linear Operator; Nonlinear Operator;
D O I
10.1186/1687-1812-2013-345
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We discuss the existence of a fixed point for a class of nonlinear operators in Hilbert spaces with lattice structure by a combination of variational and partial ordered methods. An application to second-order ordinary differential equations is included.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] FIXED POINT AND ERGODIC THEOREMS FOR λ-HYBRID MAPPINGS IN HILBERT SPACES
    Aoyama, Koji
    Iemoto, Shigeru
    Kohsaka, Fumiaki
    Takahashi, Wataru
    [J]. JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2010, 11 (02) : 335 - 343
  • [42] Fixed point theorems of (a, b)-monotone mappings in Hilbert spaces
    Lin, Lai-Jiu
    Wang, Sung-Yu
    [J]. FIXED POINT THEORY AND APPLICATIONS, 2012,
  • [43] Strong convergence theorems for a class of split feasibility problems and fixed point problem in Hilbert spaces
    Zhu, Jinhua
    Tang, Jinfang
    Chang, Shih-sen
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2018,
  • [44] Fixed point theorems for a class of mixed monotone operators
    Liang, ZD
    Zhang, LL
    Li, SJ
    [J]. ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2003, 22 (03): : 529 - 542
  • [45] FIXED-POINT THEOREMS FOR A SUM OF NONLINEAR OPERATORS
    SINGH, SP
    [J]. NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 19 (02): : A373 - A373
  • [46] FIXED POINT THEOREMS FOR A CLASS OF CONTRACTIONS IN METRIC SPACES
    Akinbo, Gbenga
    [J]. BULLETIN OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 3 (04): : 80 - 83
  • [47] FIXED POINT THEOREMS FOR NEW NONLINEAR MAPPINGS IN A HILBERT SPACE
    Takahashi, Wataru
    [J]. JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2010, 11 (01) : 79 - 88
  • [48] Spaces of compact operators on a Hilbert space with the fixed point property
    Dowling, PN
    Randrianantoanina, N
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 1999, 168 (01) : 111 - 120
  • [49] Fixed Point Theorems for Nonlinear Contractions in Menger Spaces
    Ume, Jeong Sheok
    [J]. ABSTRACT AND APPLIED ANALYSIS, 2011,
  • [50] FIXED-POINT THEOREMS FOR OPERATORS ON BANACH-SPACES
    NAIK, KV
    [J]. INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 1981, 12 (03): : 312 - 316